1013税收问题Exp3_6

本文介绍了一个简单的C语言程序,用于根据不同的收入区间计算相应的税收。程序通过条件判断实现了税收的分段累进计算,并提供了样例输入输出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#include <stdio.h>
/*
作者:
厦门理工学院
    计算机与信息工程学院
        黄潮钦
时间:2017101316:30:40 
程序描述:
Exp3_6税收问题

Time Limit:1000MS  Memory Limit:65536K
Total Submit:2806 Accepted:1004

Description

假设某国家收税是分段计费,标准如下:在1万元以上部分收税20%;5000-10000元部分收税10%;1000-5000元部分收税5%;1000元以下部分免税。根据输入的金额计算应缴纳的税金。
如:某人收入是12000元,则应缴纳的税金为4000*5%+5000*10%+2000*20%=1100元

Input

输入一个月的收入,实型。

Output

输出应缴纳的税金,实型,保留两位小数。

Sample Input


12000
Sample Output


1100.00
Source
*/
int main()
{
    int money;
    scanf("%d",&money);// 输入金钱 
    double outmoney=0.0;//定义一个要交的钱 
    if(money>1000&&money<=5000) 
    {
        outmoney=(money-1000)*0.05;
    }
    else if(money>5000&&money<=10000)
    {
        outmoney=(money-5000)*0.1+200;
    }
    else if(money>10000)
    {
        outmoney=(money-10000)*0.2+700;
    }

    printf("%.2lf",outmoney);

    return 0;
}
exp_3_3_style_transfer是一个与风格转移相关的实验。风格转移是一种图像处理技术,它可以将一幅图像的风格转移到另一幅图像上,从而创造出具有不同风格的图像。exp_3_3_style_transfer不仅仅是将两幅图像进行融合,而且还能通过使用神经网络算法来实现样式的转移。 exp_3_3_style_transfer使用了深度学习中的卷积神经网络(CNN)。首先,该实验会选择一幅参考图像和一幅待转移的图像。然后,通过CNN模型的训练和优化,将参考图像的风格特征和待转移图像的内容特征进行提取和融合。最终生成的图像既具有待转移图像的内容,又具有参考图像的风格。 在这个实验中,exp_3_3_style_transfer主要包括以下步骤: 1. 定义损失函数:通过定义内容损失和风格损失来度量生成图像和待转移图像之间的差异。 2. 构建神经网络模型:使用卷积神经网络来提取图像的内容特征和风格特征。 3. 训练模型:通过反向传播算法和梯度下降优化算法,优化损失函数,使生成图像和待转移图像更加接近。 4. 进行风格转移:使用训练好的模型来将参考图像的风格特征与待转移图像的内容特征进行融合,生成具有新风格的图像。 5. 评估结果:通过与参考图像进行对比,评估生成图像的质量和风格转移效果。 exp_3_3_style_transfer在图像处理、艺术创作和设计等领域具有广泛的应用,可以用于创作个性化的艺术作品、生成风格统一的图像集合,以及改变图像风格等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值