(题目描述略)
其实本题暴力做法 O ( n l o g n ) O(nlogn) O(nlogn) 可过(若子树大小相等则暴力判断),可惜笔者未能想到,只能想出 O ( n ) O(n) O(n) 的算法。
将二叉树每节点深度按中序排列,若某子树所在区间回文则该子树结构对称;
将二叉树每节点权值按中序排列,若某子树所在区间回文则该子树权值对称;
满足结构对称和权值对称则为对称二叉树。
这样,本题转化为判断数组上 n 个区间是否回文的问题,用 Manacher 或 Hash 均可解决。Manacher 对完整中序序列操作,算出以每元素为中心最长回文序列,判断其是否包括以该点为根子树所有节点。Hash 在中序遍历时操作,算出某点两子树正反中序散列值,继而算出以该点为根子树正反中序散列值,深度和权值的正反散列值若都相等则该子树对称。笔者使用的是散列算法。
代码如下:
#include<stdio.h>
#define MAX_N (1000005)
#define HASHNUMIT (0x3FD)
#define HASHNUMOD (0xFFFFD)
int ans,l[MAX_N],r[MAX_N],siz[MAX_N],v[MAX_N];
struct H
{
int hn,hp,pw;
void mak(int obj)
{
hn=hp=obj%HASHNUMOD,pw=HASHNUMIT;
}
}vp[MAX_N],vs[MAX_N];
H cons(H car,H cdr)
{
H con;
con.hp=(car.hp*(long long)cdr.pw+cdr.hp)%HASHNUMOD;
con.hn=(cdr.hn*(long long)car.pw+car.hn)%HASHNUMOD;
con.pw=car.pw*(long long)cdr.pw%HASHNUMOD;
return con;
}
void dfs(int n,int d)
{
vp[n].mak(v[n]),vs[n].mak(d),siz[n]=1;
if(l[n]!=-1)
dfs(l[n],d+1),vp[n]=cons(vp[l[n]],vp[n]),vs[n]=cons(vs[l[n]],vs[n]),siz[n]+=siz[l[n]];
if(r[n]!=-1)
dfs(r[n],d+1),vp[n]=cons(vp[n],vp[r[n]]),vs[n]=cons(vs[n],vs[r[n]]),siz[n]+=siz[r[n]];
if(vp[n].hp==vp[n].hn&&vs[n].hp==vs[n].hn&&ans<siz[n])
ans=siz[n];
}
int main()
{
freopen("tree.in","r",stdin);
freopen("tree.out","w",stdout);
int n;
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d",&v[i]);
for(int i=1;i<=n;i++)
scanf("%d %d",&l[i],&r[i]);
ans=0,dfs(1,1);
printf("%d",ans);
return 0;
}