题目描述
一棵有点权的有根树如果满足以下条件,则被轩轩称为对称二叉树:
- 二叉树;
- 将这棵树所有节点的左右子树交换,新树和原树对应位置的结构相同且点权相等。
下图中节点内的数字为权值,节点外的 idid 表示节点编号。
现在给出一棵二叉树,希望你找出它的一棵子树,该子树为对称二叉树,且节点数 最多。请输出这棵子树的节点数。
注意:只有树根的树也是对称二叉树。本题中约定,以节点 TT 为子树根的一棵“子 树”指的是:节点TT 和它的全部后代节点构成的二叉树。
输入输出格式
输入格式:
第一行一个正整数 nn,表示给定的树的节点的数目,规定节点编号 1 \sim n1∼n,其中节点 11 是树根。
第二行 nn 个正整数,用一个空格分隔,第 ii 个正整数 v_ivi 代表节点 ii 的权值。
接下来 nn 行,每行两个正整数 l_i, r_ili,ri,分别表示节点 ii 的左右孩子的编号。如果不存在左 / 右孩子,则以 -1−1表示。两个数之间用一个空格隔开。
输出格式:
输出文件共一行,包含一个整数,表示给定的树的最大对称二叉子树的节点数。
输入输出样例
输入样例#1: 复制
2 1 3 2 -1 -1 -1
输出样例#1: 复制
1
输入样例#2: 复制
10 2 2 5 5 5 5 4 4 2 3 9 10 -1 -1 -1 -1 -1 -1 -1 -1 -1 2 3 4 5 6 -1 -1 7 8
输出样例#2: 复制
3
说明
【输入输出样例 1 说明】
最大的对称二叉子树为以节点 22 为树根的子树,节点数为 11。
【输入输出样例 2 说明】
最大的对称二叉子树为以节点 77 为树根的子树,节点数为 33。
【数据规模与约定】
共 2525 个测试点。
v_i ≤ 1000vi≤1000。
测试点 1 \sim 3, n ≤ 101∼3,n≤10,保证根结点的左子树的所有节点都没有右孩子,根结点的右 子树的所有节点都没有左孩子。
测试点 4 \sim 8, n ≤ 104∼8,n≤10。
测试点 9 \sim 12, n ≤ 10^59∼12,n≤105,保证输入是一棵“满二叉树” 。
测试点 13 \sim 16, n ≤ 10^513∼16,n≤105,保证输入是一棵“完全二叉树”。
测试点 17 \sim 20, n ≤ 10^517∼20,n≤105,保证输入的树的点权均为 11。
测试点 21 \sim 25, n ≤ 10^621∼25,n≤106。
本题约定:
层次:节点的层次从根开始定义起,根为第一层,根的孩子为第二层。树中任一节 点的层次等于其父亲节点的层次加 11。
树的深度:树中节点的最大层次称为树的深度。
满二叉树:设二叉树的深度为 hh,且二叉树有 2h-12h−1 个节点,这就是满二叉树。
完全二叉树:设二叉树的深度为 hh,除第 hh 层外,其它各层的结点数都达到最大 个数,第 hh 层所有的结点都连续集中在最左边,这就是完全二叉树。
本弱鞠又来强行解释了,深搜,主要是参数传递的很妙:左==右+右==左,
#include<bits/stdc++.h>
#define M 1000005
using namespace std;
int a[M],let[M],rht[M],n,ans=0;
bool flag=0;
int deep(int x,int y)
{
if(x==-1&&y==-1) return 0;//没有节点
if(x==-1||y==-1||a[x]!=a[y])//不对称
{
flag=1;
return 0;
}
return deep(let[x],rht[y])+deep(rht[x],let[y])+2;//对称传递参数
}
int main()
{
ios::sync_with_stdio(false);//输入数据很多
cin>>n;
for(int i=1;i<=n;i++) cin>>a[i];
for(int i=1;i<=n;i++) cin>>let[i]>>rht[i];
for(int i=1;i<=n;i++)
{
flag=false;
int sum=deep(let[i],rht[i])+1;//加上根节点
if(!flag)
ans=max(ans,sum);
}
cout<<ans;
return 0;
}