Xception详解

Xception 详解

论文《Xception: Deep Learning with Depthwise Separable Convolutions

1 主要思想

传统的卷积操作同时对输入的feature mapping的跨通道交互性(cross-channel correlations)、**空间交互性(spatial correlations)**进行了映射。

Inception系列结构着力于将上述过程进行分解,在一定程度上实现了跨通道相关性和空间相关性的解耦

文章在Inception的基础上进行改进,使用深度可分离卷积(depthwise separate convolution)替代传统的Inception块,实现跨通道相关性和空间相关性的完全解耦。此外,文章还引入了残差连接,最终提出了Xception的网络结构。

2 Inception回顾

传统Conv进行操作时,同时在输入的通道维度和空间维度进行了操作,跨通道相关性和空间相关性的耦合性很高。

例如,对于h*h*c的feature mapping,卷积核尺寸为s*s,但实际上卷积核尺寸为s*s*c。在进行一次卷积操作时,实际上对feature mapping中的一个s*s*c进行了信息融合,其中s*s为空间维度,c为通道维度。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

Inception结构在一定程度上对跨通道相关性和空间相关性进行了解耦。

可以知道的是,多分支卷积中使用1*1 Conv进行降维等价于先进行1*1 Conv后在进行分组卷积。以简化版的Inception为例,Figure 3 给出了Inception的等价形式。

回到Inception结构,先对feature mapping进行pointwise convolutions(1*1 Conv),以实现跨通道相关性的独立映射;然后进行分组卷积,将映射空间划分为若干个子空间,在子空间内进行卷积操作。

可以发现的是,Inception结构在一定程度上实现了跨通道相关性和空间相关性的解耦,但并未实现完全解耦(子空间的卷积操作)

3 depthwise separate convolutions

考虑Inception的一种极端情况,在pointwise convolutions后进行分组时,将每个通道化为一组,即对于h*h*c的输入,分c组,每组一个通道。这与MobileNet中的depthwise separate convolutions类似。

depthwise separate convolutions由depthwise convolutions和pointwise convolutions组成。前者为分组数等于通道数的分组卷积,实现了空间相关性的映射;后者与Inception相同,实现了跨通道相关性的映射。这样可以看出,depthwise separate convolutions实现了空间相关性和跨通道相关性的完全解耦。

但不同的是,极端情况下的Inception中pointwise convolutions的位置与depthwise separate convolutions中相反,其次还包含了depthwise separate convolutions中没有的非线性层。

为了简便,文章使用了depthwise separate convolutions。

4 模型结构

基于上述描述,文章提出了Xception的具体结构。其中共包括36层卷积,分为14个stage。

在这里插入图片描述

5 模型性能

文章分别在ImageNet和JFT数据集上进行了测试,Xception表现较好

在这里插入图片描述

在这里插入图片描述

与Inception V3相比,Xception参数量更少,收敛速度更快,准确度更高。

此外,模型还验证了残差结构的效果,实验表明残差结构提升明显

在这里插入图片描述

  • 7
    点赞
  • 58
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值