【数据结构与算法】之深入解析“随机翻转矩阵”的求解思路与算法示例

本文详细介绍了如何解决随机翻转矩阵的问题,包括双指针、哈希表、数组映射和分块四种求解算法,旨在优化时间和空间复杂度,确保在矩阵中找到一个值为0的随机位置并将其翻转为1。
摘要由CSDN通过智能技术生成

一、题目要求

  • 给你一个 m x n 的二元矩阵 matrix ,且所有值被初始化为 0,请你设计一个算法,随机选取一个满足 matrix[i][j] == 0 的下标 (i, j),并将它的值变为 1,所有满足 matrix[i][j] == 0 的下标 (i, j) 被选取的概率应当均等。
  • 尽量最少调用内置的随机函数,并且优化时间和空间复杂度。
  • 实现 Solution 类:
    • Solution(int m, int n) 使用二元矩阵的大小 m 和 n 初始化该对象;
    • int[] flip() 返回一个满足 matrix[i][j] == 0 的随机下标 [i, j] ,并将其对应格子中的值变为 1;
    • void reset() 将矩阵中所有的值重置为 0。
  • 示例:
输入
["Solution", 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

╰つ栺尖篴夢ゞ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值