基于Python通过OpenCV实现的口罩识别系统理论篇

本文介绍了基于Python和OpenCV的口罩识别系统理论设计,包括项目环境、设计背景、需求调查和国内外技术对比。系统采用Haar特征和Adaboost级联分类器,通过检测图像特征,实现实时口罩佩戴检测,同时具备语音播报提醒功能。

基于Python通过OpenCV实现的口罩识别系统理论设计篇

一、项目实现环境

基于Python 3.8.1版本
opencv-python 4.2.0.34版本
需要自己下载OpenCV的库文件,添加其中的分类器。

二、设计背景

2020年1月新型冠状病毒爆发,截止目前(7月15号)我国新型病毒感染人数为87250,治愈人数为80914,海外确诊人数16609568,海外治愈人数10339502,这样的数字得我国人民人心惶惶,为了防止新型冠状病毒的进一步传播,我国开始大范围的口罩佩戴宣传活动。
如何尽可能快速高效的方法来检测人们佩戴口罩并落实相关的效果,保护人民生命健康与安全,成为了一项重大的考验。不仅出行运输业面临车辆地域分布广泛,活动频率较高、等现实问题,其他行业也纯在人力资源紧张,监督成本昂贵等情况,因此目前急需开发出相关产品来检测。

三、设计需求调查

根据线上调查及实地勘测,我们发现,在新型冠状病毒期间,人们在乘坐公交车,进入工厂的等出入一些公共场合时检测佩戴口罩的方法,要么是出于人们自己的自觉,要么是人们之间进行相互提醒,要么是通过监控进行排查和提醒,归根到底就是人工检查,这样的效率极其低下,也不利于对后续的排查工作。完全依赖人力进行检查不可避免地存在工作强度大,效率低下,覆盖范围小,时效性差等弊端,因此利用计算机图像处理技术代替人工进行安全检查无疑是具有重大积极意义的。

四、国内外技术对比

1、国内技术

人脸佩戴口罩识别涉及到目标检测技术和分类技术,国内目前是基于深度学习技术,一类是双阶段目标检测算法,另一类是单阶段目标检测算法。这两类算法都是由独立的网络分值生成大量的候选区域,然后在对这些候选区域进行分类和回归,确定目标的准确位置和类别。双阶段目标检测算法的算法精度更高,单阶段的目标检测算法速度更快。
MTC

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值