Python 下 Numba 加速实现比 Numpy.linalg.det() 更快速的行列式计算

本文展示了如何利用numba库优化计算任意大小矩阵行列式的过程,实现比numpy.linalg.det()快约十倍的效率。通过编写特定的计算代码并应用numba的jit加速,实现了与numpy和pytorch计算结果一致但速度显著提升的效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介

本文描述一种使用numba加速任意大小矩阵的行列式,实现比用numpy线性代数库中的函数numpy.linalg.det()快约十倍的计算速度。

背景

一项目中需要频繁计算形状为(Batch,K, K)大小矩阵的行列式,于是使用numpy线性代数库中的函数numpy.linalg.det(), 示例如下:

b = 256**2
k = 3
A = np.random.randn(b,k,k)
npDet = np.linalg.det(A)
print("The Numpy Determinant of A is", round(sum(npDet),9))

输出:
The Numpy Determinant of A is 176.93690024

简单使用timeit测试一下速度:

%timeit npDet = np.linalg.det(A)

输出:
10.8 ms ± 90 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

平均10ms的执行速度实在是有点浪费生命,人生苦短,不如自己造轮子。

再造一个更快的轮子:

接下来我们重写一个计算行列式的代码并使用numba.jit()进行加速:

@numba.jit(nopython=<
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值