Markov random fields——斯坦福cs 228

Markov random fields

贝叶斯网络是一类模型可以简洁的表示感兴趣的概率分布。但是我们在Bayesian Networks中发现有些概率分布是不能由其表示的。

在这种情况下,除非我们想去引入假性独立变量,我们回退一个较少的简洁的表示。但是会导致一个额外的不必要的参数在模型中,同时也让模型更加不容易学习和预测。

然而,存在另一种简洁的表示分布概率的方式,它是基于语言的无向图。Markov random fields(MRFs)能有效的表示有向图无法表示的分布。接下来我们将探索MRFs的优缺点。

MRFs

假设我们对人ABCD的喜好投票,记(A,B),(B,C),(C,D),(D,A)是朋友并且朋友之间有相似的投票偏好。很自然这个这些影响可以用无向图表示。

这里写图片描述

一种方式定义ABCD投票的联合分布,可以定义以下形式:

这里写图片描述
其中$ \phi$ (X,Y)是一个因子表示的朋友间应该付多少的投票:
这里写图片描述

这些因子在没有归一化的分布被称之为因式分解。最后的概率等于:这里写图片描述
Z是用来归一化的常量,这里写图片描述

归一化后,我们可以视$\phi(A,B)$作为推动B的投票接近A的交。同理,$\phi(B,C)$作为推动B的投票接近C的交,最可能的投票将缓解他们之间的投票冲突。

形式化定义(Formal definition)

一个Markov Random Field(MRF)是通过无向图来定义一个多个变量($x_{1},......,x_{n}$)概率分布p.概率分布p的形式为:这里写图片描述

其中,C记为G的团的集合(cliques,团满足顶点集c任何两个顶点都存在连接),Z的值:是归一化作用这里写图片描述

因此,对于给出的图G,我们的概率分布包含各种因子,可能是单个节点,或边,或三角等。我们不需要给每个团都提供因式分解。在上述的例子中,我们定义每个边为一个团。

与贝叶斯网络比较

这里写图片描述
上述明显可以得到上图,

总之,MRFs超过有向图模型有以下优点:

  • 他们应用到一个更宽的问题,这些是没有方向依赖的变量
  • 无向图可以很清晰的表示贝叶斯网络不能表示的依赖

但是也会引入少数的缺点:

  • 归一化常量Z要求相加指数级别的数。因此,无向图模型是更棘手的,所以需要更多的近似技术。
  • 无向图或许很难转移,像贝叶斯网络很容易产生数据,而且在某些应用中很重要。

不难发现贝叶斯网络是MRFs的一个特例,用的一个特殊的团分解(条件概率,暗示这图是无环的)并且归一化常数为1。如果我们去除他们的方向,并且给所有的父节点增加边,然后这个CPDs就因式分解成无向的图。这个称之为moralization.这里写图片描述

因此MRFs更有力量比贝叶斯网络,但是更难计算。一般贝叶斯网络度可以用,但是MRFs仅仅是用在有向图的非自然场景中。

在MRFs中的独立性(Independencies in Markov Random Fields)
如果两个变量之间的未观测变量存在路径,则xy变量是依赖的。然而,如果x的邻居所有都是被观测的,那么x独立于其他的变量,因为他们仅仅影响x通过他的邻居。如下图:这里写图片描述

特殊情况下,我们将观测变量设为图的切集,将图切成两半,然后这两半是相互的独立的。这里写图片描述

形式化上,我们定义一个变量X的Markov blanket U,如果观测U我们发现x独立于剩下的变量。这里写图片描述
这里写图片描述

Conditional Random Fields

MRFs非常重要的应用就是条件概率分布p(y|x).在这种下,我们记x $\in X$,y$\in Y$是向量式的变量。给出x,发现y的兴趣。有结构的预测问题。

例子

从字符图像序列中识别出字符。$x_{i}$是矩阵,$y_{i}\in{‘a’,’b’,….,’z’}这里写图片描述

我们理论上可以训练一个分类器用于从$x_{i}$预测$y_{i}$.然而字母来自整个单词,预测将会应该会从不同的i中得到信息。在上图中,第二个输入要不是V或者U;然而通过邻居Q和E来告诉那个具有较高的置信度。

形式化定义

这里写图片描述

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
Markov Random Fields (MRFs), also known as Markov networks, are probabilistic graphical models used to represent complex random systems. They are commonly used in computer vision, image processing, and natural language processing. MRFs model the joint probability distribution of a set of random variables as a product of local potentials or energy functions. These energy functions capture the compatibility between neighboring variables and encode the prior knowledge about the system being modeled. The key property of MRFs is the Markovian property, which states that the probability of a variable depends only on its immediate neighbors in the graph. This makes MRFs useful for modeling systems where the interactions between variables are local and sparse, such as in image segmentation or object recognition. In MRFs, the nodes represent random variables and the edges represent the dependencies between them. The energy function of an MRF is defined as a sum of local potentials over all cliques (fully connected subgraphs) in the graph. The probability distribution is then defined by normalizing the energy function over all possible configurations of the variables. Inference in MRFs involves computing the marginal probabilities of the variables given some evidence or constraints. This can be done using algorithms such as belief propagation, Gibbs sampling, or variational methods. MRFs have been successfully applied to a wide range of problems in computer vision, such as image denoising, stereo vision, and object recognition. They have also been used in natural language processing for tasks such as part-of-speech tagging and parsing.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

super_lsl

谢谢你的欣赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值