深入理解深度学习分割网络Unet——U-Net: Convolutional Networks for Biomedical Image Segmentation

##背景
分割

	Mask = Function(I)
  1. 什么是图像分割问题呢? 简单的来讲就是给一张图像,检测是用框出框出物体,而图像分割分出一个物体的准确轮廓。也这样考虑,给出一张图像 I,这个问题就是求一个函数,从I映射到Mask。至于怎么求这个函数有多种方法。我们可以看到这个图,左边是给出图像,可以看到人和摩托车,右边是分割结果。
    图二
  2. 求这个函数有很多方法,但是第一次将深度学习结合起来的是这篇文章全卷积网络(FCN),利用深度学习求这个函数。在此之前深度学习一般用在分类和检测问题上。由于用到CNN,所以最后提取的特征的尺度是变小的。和我们要求的函数不一样,我们要求的函数是输入多大,输出有多大。为了让CNN提取出来的尺度能到原图大小,FCN网络利用上采样和反卷积到原图像大小。然后做像素级的分类。可以看图二,输入原图,经过VGG16网络,得到特征map,然后将特征map上采样回去。再将预测结果和ground truth每个像素一一对应分类,做像素级别分类。也就是说将分割问题变成分类问题,而分类问题正好是深度学习的强项。如果只将特征map直接上采样或者反卷积,明显会丢失很多信息。

U-Net是一种用于图像分割深度学习网络结构,常被用于医学图像分析和计算机视觉领域。U-Net网络结构可以有效地将输入图像分割为多个类别,并且在训练过程中能够达到较好的分割精度。 CSDN是一个开发者社区网站,提供了许多深度学习相关的资源和文档。其中,有一份关于U-Net代码的多类别训练文档可供下载和学习。这份文档提供了详细的说明和实现代码,帮助开发者理解并应用U-Net进行多类别图像分割任务。 在使用U-Net进行多类别训练时,我们需要准备带有标签的训练数据集。每个图像样本都包含输入图像和对应的标签图像,标签图像中每个像素都被赋予表示不同类别的标签。通过使用U-Net网络结构,我们可以将输入图像传入网络中进行训练,并根据网络输出与标签图像进行比较来计算损失,然后使用反向传播算法来更新网络参数,最终使网络能够对输入图像进行准确的多类别分割。 通过CSDN下载的U-Net代码,我们可以学习到如何搭建U-Net网络结构、如何处理输入数据、如何计算损失并进行反向传播更新参数等步骤。这份文档提供了一份较为完整的实现,并可以根据具体任务自定义网络的结构和损失函数。 总之,通过使用U-Net网络结构以及CSDN提供的多类别训练代码,我们可以快速实现并训练图像分割任务,并获得较好的分割结果。这份代码对于深度学习研究者和开发者来说,是一个非常有价值的资源。
评论 92
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

水煮城府、器

谢谢你的欣赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值