跳台阶问题(类似斐波那契数列)

题目来源:https://leetcode.cn/problems/qing-wa-tiao-tai-jie-wen-ti-lcof/

引言

动态规划解法,时间复杂度为 O ( n ) O(n) O(n)
使用矩阵乘法快速幂,时间复杂度为 O ( l o g n ) O(logn) O(logn)

找规律

n012345
ans112358

f ( n ) = { 1 , n = 0 , 1 f ( n − 2 ) + f ( n − 1 ) , n ≥ 2 f(n) = \begin{cases} 1, & n=0,1 \\ f(n-2) + f(n-1), &n \ge2 \end{cases} f(n)={1,f(n2)+f(n1),n=0,1n2

动态规划代码

class Solution {
    public int numWays(int n) {
        int a = 1, b = 1, sum;
        for(int i = 0; i < n; i++){
            sum = (a + b) % 1000000007;
            a = b;
            b = sum;
        }
        return a;
    }
}

矩阵快速幂

分析

改写状态转移公式如下

[ f ( n ) f ( n − 1 ) ] = [ 1 1 1 0 ] [ f ( n − 1 ) f ( n − 2 ) ] \begin{bmatrix} f(n) \\ f(n-1) \\ \end{bmatrix} = \begin{bmatrix} 1 & 1\\ 1 & 0\\ \end{bmatrix} \begin{bmatrix} f(n-1) \\ f(n-2) \\ \end{bmatrix} [f(n)f(n1)]=[1110][f(n1)f(n2)]

以此类推…

[ f ( n ) f ( n − 1 ) ] = [ 1 1 1 0 ] n − 1 [ f ( 1 ) f ( 0 ) ] \begin{bmatrix} f(n) \\ f(n-1) \\ \end{bmatrix}= \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ \end{bmatrix}^{n-1} \begin{bmatrix} f(1) \\ f(0) \\ \end{bmatrix} [f(n)f(n1)]=[1110]n1[f(1)f(0)]

方阵乘法较为方便改写为如下情况。

[ f ( n ) 0 f ( n − 1 ) 0 ] = [ 1 1 1 0 ] n − 1 [ f ( 1 ) 0 f ( 0 ) 0 ] \begin{bmatrix} f(n) & 0\\ f(n-1) & 0\\ \end{bmatrix}= \begin{bmatrix} 1 & 1\\ 1 & 0\\ \end{bmatrix}^{n-1} \begin{bmatrix} f(1) & 0\\ f(0) & 0\\ \end{bmatrix} [f(n)f(n1)00]=[1110]n1[f(1)f(0)00]

那么如何快速求得 [ 1 1 1 0 ] n \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ \end{bmatrix}^n [1110]n即为加速的关键

快速幂

将幂次 n n n改写为二进制形式来看,举例当 n = 5 n = 5 n=5时,改写为二进制 n = 0 b 101 n = 0b101 n=0b101
那么 x 5 = x 2 2 ⋅ 1 ⋅ x 2 1 ⋅ 0 ⋅ x 2 0 ⋅ 1 x^5 = x^{2^2 \cdot 1} \cdot x^{2^1 \cdot 0} \cdot x^{2^0 \cdot 1} x5=x221x210x201
快速幂即可从后往前遍历 n n n的二进制数每一位,每比特表示为有效位,每往左迭代1位,乘数平方1次。

Java完整代码

class Solution {
    static final int MOD = 1000000007;

    public int numWays(int n) {
        if (n < 2) {
            return 1;
        }
        int[][] base = {{1, 1}, {1, 0}};
        int[][] f1f0 = {{1, 1}, {0, 0}};
        int[][] answer = matrixMultiplication(f1f0, matrixPower(base, n - 1)) ;
        return answer[0][0];
    }

    public int[][] matrixPower(int[][] matrix, int n) {
        int[][] result = {{1, 0}, {0, 1}};
        while (n > 0) {
            if ((n & 1) == 1) {
                result = matrixMultiplication(matrix, result);
            }
            n >>= 1;
            matrix = matrixMultiplication(matrix, matrix);
        }
        return result;
    }

    public int[][] matrixMultiplication(int[][] matrix1, int[][] matrix2) {
        int[][] result = new int[2][2];
        for (int i = 0; i < 2; ++i) {
            for (int j = 0; j < 2; ++j) {
                result[i][j] = (int) ((
                        (long) matrix1[i][0] * matrix2[0][j] + (long) matrix1[i][1] * matrix2[1][j]
                ) % MOD);
            }
        }
        return result;
    }
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值