【实对称矩阵的对角化2】

8、设3阶对称矩阵 A A A的特征值为 λ 1 = 1 , λ 2 = − 1 , λ 3 = 0 \lambda_1=1,\lambda_2=-1,\lambda_3=0 λ1=1,λ2=1,λ3=0,对应 λ 1 , λ 2 \lambda_1,\lambda_2 λ1,λ2的特征向量依次为 p 1 = ( 1 , 2 , 2 ) T , p 2 = ( 2 , 1 , − 2 ) T p_1=(1,2,2)^T,p_2=(2,1,-2)^T p1=(1,2,2)T,p2=(2,1,2)T,求 A A A

解: A A A为对称矩阵,有正交矩阵 Q = ( q 1 , q 2 , q 3 ) Q=(q_1,q_2,q_3) Q=(q1,q2,q3)使 Q T A Q = Λ = ( 1 0 0 0 − 1 0 0 0 0 ) Q^TAQ=\Lambda=\left( \begin{matrix} 1&0&0\\ 0&-1&0\\ 0&0&0 \end{matrix} \right) QTAQ=Λ= 100010000
q 1 = 1 3 ( 1 2 2 ) , q 2 = 1 3 ( 2 1 − 2 ) q 3 与 p 1 , p 2 正交 ⇒ p 1 T q 3 = 0 , p 2 T q 3 = 0 ⇒ ( p 1 T p 2 T ) x = 0 ( 1 2 2 2 1 − 2 ) → ( 1 2 2 0 − 3 − 6 ) → ( 1 2 2 0 1 2 ) → ( 1 0 − 2 0 1 2 ) ⇒ ξ 3 = ( 2 − 2 1 ) 单位化 q 3 = 1 3 ( 2 − 2 1 ) ⇒ Q = 1 27 ( 1 2 2 2 1 − 2 2 − 2 1 ) ⇒ Q − 1 = 3 ( 1 2 2 2 1 − 2 2 − 2 1 ) ⇒ Q − 1 A Q = Λ A = Q A Q − 1 = ( − 1 3 0 2 3 0 1 3 2 3 2 3 2 3 0 ) q_1=\frac{1}{3}\left( \begin{matrix} 1\\ 2\\ 2 \end{matrix} \right),q_2=\frac{1}{3}\left( \begin{matrix} 2\\ 1\\ -2 \end{matrix} \right)\\ q_3\text{与}p_1,p_2\text{正交}\Rightarrow p_1^Tq_3=0,p_2^Tq_3=0\Rightarrow \left( \begin{matrix} p_1^T\\ p_2^T \end{matrix} \right)x=0\\ \left( \begin{matrix} 1&2&2\\ 2&1&-2 \end{matrix} \right)\to \left( \begin{matrix} 1&2&2\\ 0&-3&-6 \end{matrix} \right)\to \left( \begin{matrix} 1&2&2\\ 0&1&2 \end{matrix} \right)\to \left( \begin{matrix} 1&0&-2\\ 0&1&2 \end{matrix} \right)\Rightarrow \xi_3=\left( \begin{matrix} 2\\ -2\\ 1 \end{matrix} \right)\\ \text{单位化}q_3=\frac{1}{3}\left( \begin{matrix} 2\\ -2\\ 1 \end{matrix} \right)\\ \Rightarrow Q=\frac{1}{27}\left( \begin{matrix} 1&2&2\\ 2&1&-2\\ 2&-2&1 \end{matrix} \right)\Rightarrow Q^{-1}=3\left( \begin{matrix} 1&2&2\\ 2&1&-2\\ 2&-2&1 \end{matrix} \right)\\ \Rightarrow Q^{-1}AQ=\Lambda\\ A=QAQ^{-1}=\left( \begin{matrix} -\frac{1}{3}&0&\frac{2}{3}\\ 0&\frac{1}{3}&\frac{2}{3}\\ \frac{2}{3}&\frac{2}{3}&0 \end{matrix} \right) q1=31 122 ,q2=31 212 q3p1,p2正交p1Tq3=0,p2Tq3=0(p1Tp2T)x=0(122122)(102326)(102122)(100122)ξ3= 221 单位化q3=31 221 Q=271 122212221 Q1=3 122212221 Q1AQ=ΛA=QAQ1= 310320313232320

9、设3阶对称矩阵 A A A的特征值 λ 1 = 6 , λ 2 = λ 3 = 3 \lambda_1=6,\lambda_2=\lambda_3=3 λ1=6,λ2=λ3=3,与特征值 λ 1 = 6 \lambda_1=6 λ1=6对应的特征向量为 p 1 = ( 1 , 1 , 1 ) T p_1=(1,1,1)^T p1=(1,1,1)T,求 A A A

解:设 A A A对应于 λ = 3 \lambda=3 λ=3的两个线性无关的特征向量为 p 2 , p 3 p_2,p_3 p2,p3
{ p 1 T p 2 = 0 p 1 T p 3 = 0 ⇒ p 1 T x = 0 ( 1 , 1 , 1 ) ⇒ ξ 1 = ( − 1 1 0 ) , ξ 2 = ( − 1 0 1 ) 正交化 η 1 = ξ 1 = ( − 1 1 0 ) , η 2 = ξ 2 − [ η 1 , ξ 2 ] [ η 1 , η 1 ] ⋅ η 1 = ( − 1 0 1 ) − 1 1 + 1 ( − 1 1 0 ) = ( − 1 2 − 1 2 1 ) 单位化 p 2 = 1 2 ( − 1 1 0 ) , p 3 = 1 6 ( − 1 − 1 2 ) , p 1 ′ = 1 3 ( 1 1 1 ) ⇒ Q = ( p 1 ′ , p 2 , p 3 ) = ( 1 3 − 1 2 − 1 6 1 3 1 2 − 1 6 1 3 0 2 6 ) ⇒ Q − 1 A Q = ( 6 0 0 0 3 0 0 0 3 ) , Q = 1 6 ( 1 − 1 − 1 1 1 − 1 1 0 2 ) , Q − 1 = ( 2 2 2 − 3 3 0 − 1 − 1 2 ) ⇒ A = Q Λ Q − 1 = ( 4 1 1 1 4 1 1 1 4 ) \begin{cases} p_1^Tp_2=0\\ p_1^Tp_3=0 \end{cases}\Rightarrow p_1^Tx=0\\ (1,1,1)\Rightarrow \xi_1=\left( \begin{matrix} -1\\ 1\\ 0 \end{matrix} \right),\xi_2=\left( \begin{matrix} -1\\ 0\\ 1 \end{matrix} \right)\\ \text{正交化}\eta_1=\xi_1=\left( \begin{matrix} -1\\ 1\\ 0 \end{matrix} \right),\eta_2=\xi_2-\frac{[\eta_1,\xi_2]}{[\eta_1,\eta_1]}\cdot \eta_1=\left( \begin{matrix} -1\\ 0\\ 1 \end{matrix} \right)-\frac{1}{1+1}\left( \begin{matrix} -1\\ 1\\ 0 \end{matrix} \right)=\left( \begin{matrix} -\frac{1}{2}\\ -\frac{1}{2}\\ 1 \end{matrix} \right)\\ \text{单位化}p_2=\frac{1}{\sqrt{2}}\left( \begin{matrix} -1\\ 1\\ 0 \end{matrix} \right),p_3=\frac{1}{\sqrt{6}}\left( \begin{matrix} -1\\ -1\\ 2 \end{matrix} \right),p_1'=\frac{1}{\sqrt{3}}\left( \begin{matrix} 1\\ 1\\ 1 \end{matrix} \right)\\ \Rightarrow Q=(p_1',p_2,p_3)=\left( \begin{matrix} \frac{1}{\sqrt{3}}&-\frac{1}{\sqrt{2}}&-\frac{1}{\sqrt{6}}\\ \frac{1}{\sqrt{3}}&\frac{1}{\sqrt{2}}&-\frac{1}{\sqrt{6}}\\ \frac{1}{\sqrt{3}}&0&\frac{2}{\sqrt{6}} \end{matrix} \right)\\ \Rightarrow Q^{-1}AQ=\left( \begin{matrix} 6&0&0\\ 0&3&0\\ 0&0&3 \end{matrix} \right),Q=\frac{1}{6}\left( \begin{matrix} 1&-1&-1\\ 1&1&-1\\ 1&0&2 \end{matrix} \right),Q^{-1}=\left( \begin{matrix} 2&2&2\\ -3&3&0\\ -1&-1&2 \end{matrix} \right)\\ \Rightarrow A=Q\Lambda Q^{-1}=\left( \begin{matrix} 4&1&1\\ 1&4&1\\ 1&1&4 \end{matrix} \right) {p1Tp2=0p1Tp3=0p1Tx=0(1,1,1)ξ1= 110 ,ξ2= 101 正交化η1=ξ1= 110 ,η2=ξ2[η1,η1][η1,ξ2]η1= 101 1+11 110 = 21211 单位化p2=2 1 110 ,p3=6 1 112 ,p1=3 1 111 Q=(p1,p2,p3)= 3 13 13 12 12 106 16 16 2 Q1AQ= 600030003 ,Q=61 111110112 ,Q1= 231231202 A=QΛQ1= 411141114

10、设 A = ( 2 1 2 1 2 2 2 2 1 ) A=\left( \begin{matrix} 2&1&2\\ 1&2&2\\ 2&2&1 \end{matrix} \right) A= 212122221 ,求 φ ( A ) = A 10 − 6 A 9 + 5 A 8 \varphi(A)=A^{10}-6A^9+5A^8 φ(A)=A106A9+5A8

解:
令 ∣ A − λ E ∣ = 0 = ∣ 2 − λ 1 2 1 2 − λ 2 2 2 1 − λ ∣ = ∣ 5 − λ 1 2 5 − λ 2 − λ 2 5 − λ 2 1 − λ ∣ = ( 5 − λ ) ∣ 1 1 2 0 1 − λ 0 0 1 − 1 − λ ∣ = ( 5 − λ ) ( 1 − λ ) ( 1 + λ ) λ 1 = − 1 , λ 2 = 1 , λ 3 = 5 ⇒ ∃ 正交矩阵 Q , 使 Q T A Q = Q − 1 A Q = Λ \text{令}|A-\lambda E|=0=\left| \begin{matrix} 2-\lambda&1&2\\ 1&2-\lambda&2\\ 2&2&1-\lambda \end{matrix} \right|=\left| \begin{matrix} 5-\lambda&1&2\\ 5-\lambda&2-\lambda&2\\ 5-\lambda&2&1-\lambda \end{matrix} \right|\\ =(5-\lambda)\left| \begin{matrix} 1&1&2\\ 0&1-\lambda&0\\ 0&1&-1-\lambda \end{matrix} \right|=(5-\lambda)(1-\lambda)(1+\lambda)\\ \lambda_1=-1,\lambda_2=1,\lambda_3=5\\ \Rightarrow \exist \text{正交矩阵}Q,\text{使}Q^TAQ=Q^{-1}AQ=\Lambda AλE=0= 2λ1212λ2221λ = 5λ5λ5λ12λ2221λ =(5λ) 10011λ1201λ =(5λ)(1λ)(1+λ)λ1=1,λ2=1,λ3=5正交矩阵Q,使QTAQ=Q1AQ=Λ

1) λ 1 = − 1 \lambda_1=-1 λ1=1时,
( 3 1 2 1 3 2 2 2 2 ) → ( 1 1 1 1 3 2 3 1 2 ) → ( 1 1 1 0 2 1 0 − 2 − 1 ) → ( 1 1 1 0 1 1 2 0 0 0 ) → ( 1 0 1 2 0 1 1 2 0 0 0 ) ⇒ ξ 1 = ( − 1 − 1 2 ) ⇒ p 1 = 1 6 ( − 1 − 1 2 ) \left( \begin{matrix} 3&1&2\\ 1&3&2\\ 2&2&2 \end{matrix} \right)\to \left( \begin{matrix} 1&1&1\\ 1&3&2\\ 3&1&2 \end{matrix} \right)\to \left( \begin{matrix} 1&1&1\\ 0&2&1\\ 0&-2&-1 \end{matrix} \right)\to \left( \begin{matrix} 1&1&1\\ 0&1&\frac{1}{2}\\ 0&0&0 \end{matrix} \right)\to \left( \begin{matrix} 1&0&\frac{1}{2}\\ 0&1&\frac{1}{2}\\ 0&0&0 \end{matrix} \right)\\ \Rightarrow \xi_1=\left( \begin{matrix} -1\\ -1\\ 2 \end{matrix} \right)\Rightarrow p_1=\frac{1}{\sqrt{6}}\left( \begin{matrix} -1\\ -1\\ 2 \end{matrix} \right) 312132222 113131122 100122111 1001101210 10001021210 ξ1= 112 p1=6 1 112

2) λ 2 = 1 \lambda_2=1 λ2=1时,
( 1 1 2 1 1 2 2 2 0 ) → ( 1 1 2 0 0 − 4 0 0 0 ) → ( 1 1 0 0 0 1 0 0 0 ) ⇒ ξ 2 = ( − 1 1 0 ) ⇒ p 2 = 1 2 ( − 1 1 0 ) \left( \begin{matrix} 1&1&2\\ 1&1&2\\ 2&2&0 \end{matrix} \right)\to \left( \begin{matrix} 1&1&2\\ 0&0&-4\\ 0&0&0 \end{matrix} \right)\to \left( \begin{matrix} 1&1&0\\ 0&0&1\\ 0&0&0 \end{matrix} \right) \Rightarrow \xi_2=\left( \begin{matrix} -1\\ 1\\ 0 \end{matrix} \right)\Rightarrow p_2=\frac{1}{\sqrt{2}}\left( \begin{matrix} -1\\ 1\\ 0 \end{matrix} \right) 112112220 100100240 100100010 ξ2= 110 p2=2 1 110

3) λ 3 = 5 \lambda_3=5 λ3=5时,
( − 3 1 2 1 − 3 2 2 2 − 4 ) → ( 1 1 − 2 1 − 3 2 − 3 1 2 ) → ( 1 1 − 2 0 − 4 4 0 4 − 4 ) → ( 1 0 − 1 0 1 − 1 0 0 0 ) ⇒ ξ 3 = ( 1 1 1 ) ⇒ p 2 = 1 3 ( 1 1 1 ) ⇒ Q = 1 6 ( − 1 − 1 1 − 1 1 1 2 0 1 ) , Q − 1 = ( − 1 − 1 2 − 3 3 0 2 2 2 ) ⇒ φ ( A ) = Q φ ( Λ ) Q − 1 , φ ( Λ ) = λ 10 − 6 λ 9 + 5 λ 8 , φ ( − 1 ) = 12 , φ ( 1 ) = 0 , φ ( 5 ) = 0 ⇒ φ ( A ) = 1 6 ( − 1 − 1 1 − 1 1 1 2 0 1 ) ( 12 0 0 0 0 0 0 0 0 ) ( − 1 − 1 2 − 3 3 0 2 2 2 ) = ( 2 2 − 4 2 2 − 4 − 4 − 4 8 s ) \left( \begin{matrix} -3&1&2\\ 1&-3&2\\ 2&2&-4 \end{matrix} \right)\to \left( \begin{matrix} 1&1&-2\\ 1&-3&2\\ -3&1&2 \end{matrix} \right)\to \left( \begin{matrix} 1&1&-2\\ 0&-4&4\\ 0&4&-4 \end{matrix} \right)\to \left( \begin{matrix} 1&0&-1\\ 0&1&-1\\ 0&0&0 \end{matrix} \right) \Rightarrow \xi_3=\left( \begin{matrix} 1\\ 1\\ 1 \end{matrix} \right)\Rightarrow p_2=\frac{1}{\sqrt{3}}\left( \begin{matrix} 1\\ 1\\ 1 \end{matrix} \right)\\ \Rightarrow Q=\frac{1}{6}\left( \begin{matrix} -1&-1&1\\ -1&1&1\\ 2&0&1 \end{matrix} \right),Q^{-1}=\left( \begin{matrix} -1&-1&2\\ -3&3&0\\ 2&2&2 \end{matrix} \right)\\ \Rightarrow \varphi(A)=Q\varphi(\Lambda)Q^{-1},\varphi(\Lambda)=\lambda^{10}-6\lambda^9+5\lambda^8,\varphi(-1)=12,\varphi(1)=0,\varphi(5)=0\\ \Rightarrow \varphi(A)=\frac{1}{6}\left( \begin{matrix} -1&-1&1\\ -1&1&1\\ 2&0&1 \end{matrix} \right)\left( \begin{matrix} 12&0&0\\ 0&0&0\\ 0&0&0 \end{matrix} \right)\left( \begin{matrix} -1&-1&2\\ -3&3&0\\ 2&2&2 \end{matrix} \right)=\left( \begin{matrix} 2&2&-4\\ 2&2&-4\\ -4&-4&8s \end{matrix} \right) 312132224 113131222 100144244 100010110 ξ3= 111 p2=3 1 111 Q=61 112110111 ,Q1= 132132202 φ(A)=(Λ)Q1,φ(Λ)=λ106λ9+5λ8,φ(1)=12,φ(1)=0,φ(5)=0φ(A)=61 112110111 1200000000 132132202 = 224224448s

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值