【矩阵的特征值和特征向量】

特征值和特征向量

A A A n n n阶方阵,若数 λ \lambda λ n n n维非0列向量 x x x使:
A x = λ x Ax=\lambda x Ax=λx
成立,则:
λ \lambda λ—— A A A特征值
x x x—— A A A对应于特征值 λ \lambda λ特征向量

性质

1、设 n n n阶矩阵 A = ( a i j ) A=(a_{ij}) A=(aij)的特征值为 λ 1 , λ 2 , ⋯   , λ n \lambda_1,\lambda_2,\cdots,\lambda_n λ1,λ2,,λn

1) λ 1 + λ 2 + ⋯ + λ n = a 11 + a 22 + ⋯ + a n n \lambda_1+\lambda_2+\cdots+\lambda_n=a_{11}+a_{22}+\cdots+a_{nn} λ1+λ2++λn=a11+a22++ann
2) λ 1 λ 2 ⋯ λ n = ∣ A ∣ \lambda_1\lambda_2\cdots\lambda_n=|A| λ1λ2λn=A

{ ∣ A ∣ ≠ 0 ⇒ A 可逆 ⇔ λ i ≠ 0 , i = 1 , 2 , ⋯   , n \begin{cases} |A|\neq 0 \Rightarrow A\text{可逆}\\ \Leftrightarrow \lambda_i\neq 0,i=1,2,\cdots,n \end{cases} {A=0A可逆λi=0,i=1,2,,n

A A A A 2 A^2 A2 A − 1 A^{-1} A1 A k A^k Ak φ ( A ) \varphi(A) φ(A)
特征值 λ \lambda λ λ 2 \lambda^2 λ2 1 λ \frac{1}{\lambda} λ1 λ k \lambda^k λk φ ( λ ) \varphi(\lambda) φ(λ)

2、设 λ 1 , λ 2 , ⋯   , λ m \lambda_1,\lambda_2,\cdots,\lambda_m λ1,λ2,,λm是方阵 A A A m m m个特征值, p 1 , p 2 , ⋯   , p m p_1,p_2,\cdots,p_m p1,p2,,pm依次是与之对应的特征向量,若 λ 1 , λ 2 , ⋯   , λ m \lambda_1,\lambda_2,\cdots,\lambda_m λ1,λ2,,λm各不相等,则 p 1 , p 2 , ⋯   , p m p_1,p_2,\cdots,p_m p1,p2,,pm线性无关

3、设 λ 1 , λ 2 \lambda_1,\lambda_2 λ1,λ2是方阵 A A A的2个不同特征值, ξ 1 , ξ 2 , ⋯   , ξ s \xi_1,\xi_2,\cdots,\xi_s ξ1,ξ2,,ξs η 1 , η 2 , ⋯   , η t \eta_1,\eta_2,\cdots,\eta_t η1,η2,,ηt分别是对应于 λ 1 , λ 2 \lambda_1,\lambda_2 λ1,λ2线性无关的特征向量,则 ξ 1 , ξ 2 , ⋯   , ξ s , η 1 , η 2 , ⋯   , η t \xi_1,\xi_2,\cdots,\xi_s,\eta_1,\eta_2,\cdots,\eta_t ξ1,ξ2,,ξs,η1,η2,,ηt线性无关

4、对称矩阵的特征值为实数

5、设 λ 1 , λ 2 \lambda_1,\lambda_2 λ1,λ2对称矩阵 A A A的两个特征值, p 1 , p 2 p_1,p_2 p1,p2是对应的特征向量,若 λ 1 ≠ λ 2 \lambda_1\neq \lambda_2 λ1=λ2,则:
⇒ p 1 与 p 2 正交 \Rightarrow p_1\text{与}p_2\text{正交} p1p2正交

6、设 A A A n n n对称矩阵,则必有正交矩阵 P P P,使:
P − 1 A P = P T A P = Λ ( Λ ——以 A 的 n 个特征值为对角元的对角矩阵 ) P^{-1}AP=P^TAP=\Lambda\\ (\Lambda\text{——以}A\text{的}n\text{个特征值为对角元的对角矩阵}) P1AP=PTAP=Λ(Λ——An个特征值为对角元的对角矩阵)

7、设 A A A n n n对称矩阵 λ \lambda λ A A A的特征方程的 k k k重根,则矩阵 A − λ E A-\lambda E AλE的秩 R ( A − λ E ) = n − k R(A-\lambda E)=n-k R(AλE)=nk
⇒ λ 恰有 k 个线性无关的特征向量 ⇔ 实对称矩阵一定可对角化 \Rightarrow \lambda \text{恰有}k\text{个线性无关的特征向量}\\ \Leftrightarrow\text{实对称矩阵一定可对角化} λ恰有k个线性无关的特征向量实对称矩阵一定可对角化

习题

1、求矩阵 A = ( 3 − 1 − 1 3 ) A=\left( \begin{matrix} 3 & -1\\ -1&3 \end{matrix} \right) A=(3113)的特征值与特征向量。

解: A x = λ x ( x ≠ 0 ) Ax=\lambda x(x\neq 0) Ax=λx(x=0)
⇒ ( A − λ E ) x = 0 ⇒ 令 ∣ A − λ E ∣ = ∣ 3 − λ − 1 − 1 3 − λ ∣ = ( 3 − λ ) 2 − 1 = 0 ⇒ λ 1 = 2 , λ 2 = 4 \Rightarrow (A-\lambda E)x=0\\ \Rightarrow \text{令} |A-\lambda E|=\left| \begin{matrix} 3-\lambda & -1\\ -1&3-\lambda \end{matrix} \right|=(3-\lambda)^2-1=0\\ \Rightarrow \lambda_1=2,\lambda_2=4 (AλE)x=0AλE= 3λ113λ =(3λ)21=0λ1=2,λ2=4

1) λ 1 = 2 \lambda_1=2 λ1=2时,
( 1 − 1 − 1 1 ) → ( 1 − 1 0 0 ) ⇒ ( x 1 x 2 ) = c 1 ( 1 1 ) ⇒ 特征向量 p 1 = ( 1 1 ) \left( \begin{matrix} 1 & -1\\ -1&1 \end{matrix} \right)\to \left( \begin{matrix} 1 & -1\\ 0&0 \end{matrix} \right)\Rightarrow \left( \begin{matrix} x_1\\ x_2 \end{matrix} \right)=c_1\left( \begin{matrix} 1\\ 1 \end{matrix} \right)\Rightarrow \text{特征向量}p_1=\left( \begin{matrix} 1 \\ 1 \end{matrix} \right) (1111)(1010)(x1x2)=c1(11)特征向量p1=(11)

2) λ 2 = 4 \lambda_2=4 λ2=4时,
( − 1 − 1 − 1 − 1 ) → ( 1 1 0 0 ) ⇒ ( x 1 x 2 ) = c 2 ( − 1 1 ) ⇒ 特征向量 p 2 = ( − 1 1 ) \left( \begin{matrix} -1 & -1\\ -1&-1 \end{matrix} \right)\to \left( \begin{matrix} 1 & 1\\ 0&0 \end{matrix} \right)\Rightarrow \left( \begin{matrix} x_1\\ x_2 \end{matrix} \right)=c_2\left( \begin{matrix} -1\\ 1 \end{matrix} \right)\Rightarrow \text{特征向量}p_2=\left( \begin{matrix} -1 \\ 1 \end{matrix} \right) (1111)(1010)(x1x2)=c2(11)特征向量p2=(11)

2、求矩阵 A = ( − 1 1 0 − 4 3 0 1 0 2 ) A=\left( \begin{matrix} -1 & 1 & 0\\ -4&3 & 0\\ 1 & 0 &2 \end{matrix} \right) A= 141130002 的特征值与特征向量。

解:
令 ∣ A − λ E ∣ = ∣ − 1 − λ 1 0 − 4 3 − λ 0 1 0 2 − λ ∣ = ( 2 − λ ) ∣ − 1 − λ 1 − 4 3 − λ ∣ = ( 2 − λ ) ( λ − 1 ) 2 = 0 ⇒ λ 1 = 2 , λ 2 = λ 3 = 1 \text{令} |A-\lambda E|=\left| \begin{matrix} -1-\lambda & 1 & 0\\ -4&3-\lambda & 0\\ 1 & 0 & 2-\lambda \end{matrix} \right|=(2-\lambda)\left| \begin{matrix} -1-\lambda & 1\\ -4&3-\lambda \end{matrix} \right|=(2-\lambda)(\lambda-1)^2=0\\ \Rightarrow \lambda_1=2,\lambda_2=\lambda_3=1 AλE= 1λ4113λ0002λ =(2λ) 1λ413λ =(2λ)(λ1)2=0λ1=2,λ2=λ3=1

1) λ 1 = 2 \lambda_1=2 λ1=2时,
( − 3 1 0 − 4 1 0 1 0 0 ) → ( 1 0 0 − 4 1 0 − 3 1 0 ) → ( 1 0 0 0 1 0 0 1 0 ) → ( 1 0 0 0 1 0 0 0 0 ) ⇒ ( x 1 x 2 x 3 ) = c 1 ( 0 0 1 ) ⇒ 特征向量 p 1 = ( 0 0 1 ) ⇒ k p 1 ( k ≠ 0 ) 是对应于 λ 1 = 2 的全部特征向量 \left( \begin{matrix} -3 & 1 &0\\ -4&1& 0\\ 1 & 0 & 0 \end{matrix} \right)\to \left( \begin{matrix} 1 & 0 & 0\\ -4&1& 0\\ -3 & 1 &0 \end{matrix} \right)\to \left( \begin{matrix} 1 & 0 & 0\\ 0&1& 0\\ 0 & 1 &0 \end{matrix} \right)\to \left( \begin{matrix} 1 & 0 & 0\\ 0&1& 0\\ 0 & 0 &0 \end{matrix} \right)\\ \Rightarrow \left( \begin{matrix} x_1\\ x_2\\ x_3 \end{matrix} \right)=c_1\left( \begin{matrix} 0\\ 0\\ 1 \end{matrix} \right)\Rightarrow \text{特征向量}p_1=\left( \begin{matrix} 0\\ 0\\ 1 \end{matrix} \right)\\ \Rightarrow kp_1(k\neq 0)\text{是对应于}\lambda_1=2\text{的全部特征向量} 341110000 143011000 100011000 100010000 x1x2x3 =c1 001 特征向量p1= 001 kp1(k=0)是对应于λ1=2的全部特征向量

2) λ 2 = λ 3 = 1 \lambda_2=\lambda_3=1 λ2=λ3=1时,
( − 2 1 0 − 4 2 0 1 0 1 ) → ( 1 0 1 − 2 1 0 − 4 2 0 ) → ( 1 0 1 0 1 2 0 0 0 ) ⇒ ( x 1 x 2 x 3 ) = c 2 ( − 1 − 2 1 ) ⇒ 特征向量 p 2 = ( − 1 − 2 1 ) ⇒ k p 2 ( k ≠ 0 ) 是对应于 λ 2 = λ 3 = 1 的全部特征向量 \left( \begin{matrix} -2 & 1 &0\\ -4&2& 0\\ 1 & 0 & 1 \end{matrix} \right)\to \left( \begin{matrix} 1 & 0 & 1\\ -2 & 1 &0\\ -4&2& 0 \end{matrix} \right)\to \left( \begin{matrix} 1 & 0 & 1\\ 0 & 1 &2\\ 0&0& 0 \end{matrix} \right)\Rightarrow \left( \begin{matrix} x_1\\ x_2\\ x_3 \end{matrix} \right)=c_2\left( \begin{matrix} -1\\ -2\\ 1 \end{matrix} \right)\Rightarrow \text{特征向量}p_2=\left( \begin{matrix} -1\\ -2\\ 1 \end{matrix} \right)\\ \Rightarrow kp_2(k\neq 0)\text{是对应于}\lambda_2=\lambda_3=1\text{的全部特征向量} 241120001 124012100 100010120 x1x2x3 =c2 121 特征向量p2= 121 kp2(k=0)是对应于λ2=λ3=1的全部特征向量

3、设2阶矩阵 A A A的特征值为 1 , − 1 , 2 1,-1,2 1,1,2,求 A ∗ + 3 A − 2 E A^*+3A-2E A+3A2E的特征值。

解: A A ∗ = ∣ A ∣ E ⇒ A ∗ = A − 1 ∣ A ∣ , ∣ A ∣ = 1 × ( − 1 ) × 2 = − 2 AA^*=|A|E\Rightarrow A^*=A^{-1}|A|,|A|=1\times(-1)\times 2=-2 AA=AEA=A1A,A=1×(1)×2=2
⇒ ∣ A ∣ A − 1 + 3 A − 2 E = − 2 A − 1 + 3 A − 2 E 的特征值 − 2 1 λ + 3 λ − 2 λ 1 = − 2 + 3 − 2 = − 1 λ 2 = 2 − 3 − 2 = − 3 λ 3 = − 1 + 6 − 2 = 3 \Rightarrow |A|A^{-1}+3A-2E=-2A^{-1}+3A-2E\text{的特征值}\\ -2\frac{1}{\lambda}+3\lambda-2\\ \lambda_1=-2+3-2=-1\\ \lambda_2=2-3-2=-3\\ \lambda_3=-1+6-2=3 AA1+3A2E=2A1+3A2E的特征值2λ1+3λ2λ1=2+32=1λ2=232=3λ3=1+62=3

4、求矩阵的特征值和特征向量:
(1) ( 2 − 1 2 5 − 3 3 − 1 0 − 2 ) \left( \begin{matrix} 2 & -1 &2\\ 5&-3& 3\\ -1 & 0 & -2 \end{matrix} \right) 251130232 ;(2) ( 1 2 3 2 1 3 3 3 6 ) \left( \begin{matrix} 1 & 2 &3\\ 2&1& 3\\ 3 & 3 & 6 \end{matrix} \right) 123213336 ;(3) ( 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 ) \left( \begin{matrix} 0 & 0 &0&1\\ 0&0& 1&0\\ 0 & 1 & 0&0\\ 1&0&0&0 \end{matrix} \right) 0001001001001000

解:(1)
令 ∣ A − λ E ∣ = 0 = ∣ 2 − λ − 1 2 5 − 3 − λ 3 − 1 0 − 2 − λ ∣ = ∣ 2 − λ − 1 λ 2 − 2 5 − 3 − λ − 7 − 5 λ − 1 0 0 ∣ = ∣ − 1 λ 2 − 2 3 + λ 7 + 5 λ ∣ = ∣ − 1 λ 2 − 1 3 + λ 4 + 4 λ ∣ = ( λ + 1 ) ∣ − 1 λ − 1 3 + λ 4 ∣ = − ( λ + 1 ) 3 ⇒ λ 1 = λ 2 = λ 3 = − 1 ( 3 − 1 2 5 − 2 3 − 1 0 − 1 ) → ( 1 0 1 0 − 2 − 2 0 − 1 − 1 ) → ( 1 0 1 0 1 1 0 0 0 ) ⇒ p = ( − 1 − 1 1 ) \text{令} |A-\lambda E|=0=\left| \begin{matrix} 2-\lambda & -1 & 2\\ 5&-3-\lambda & 3\\ -1 & 0 & -2-\lambda \end{matrix} \right|=\left| \begin{matrix} 2-\lambda & -1 & \lambda^2-2\\ 5&-3-\lambda & -7-5\lambda \\ -1 & 0 & 0 \end{matrix} \right|=\left| \begin{matrix} -1 & \lambda^2-2\\ 3+\lambda & 7+5\lambda \end{matrix} \right|=\left| \begin{matrix} -1 & \lambda^2-1\\ 3+\lambda & 4+4\lambda \end{matrix} \right|\\ =(\lambda+1) \left| \begin{matrix} -1 & \lambda-1\\ 3+\lambda & 4 \end{matrix} \right|=-(\lambda +1)^3\\ \Rightarrow \lambda_1=\lambda_2=\lambda_3=-1\\ \left( \begin{matrix} 3 & -1 &2\\ 5&-2& 3\\ -1 & 0 & -1 \end{matrix} \right)\to \left( \begin{matrix} 1 & 0 &1\\ 0&-2& -2\\ 0 & -1 & -1 \end{matrix} \right)\to \left( \begin{matrix} 1 & 0 &1\\ 0&1& 1\\ 0 & 0 & 0 \end{matrix} \right)\Rightarrow p=\left( \begin{matrix} -1\\ -1\\ 1 \end{matrix} \right) AλE=0= 2λ5113λ0232λ = 2λ5113λ0λ2275λ0 = 13+λλ227+5λ = 13+λλ214+4λ =(λ+1) 13+λλ14 =(λ+1)3λ1=λ2=λ3=1 351120231 100021121 100010110 p= 111

(2)
令 ∣ A − λ E ∣ = ∣ 1 − λ 2 3 2 1 − λ 3 3 3 6 − λ ∣ = ∣ − 1 − λ 2 3 λ + 1 1 − λ 3 0 3 6 − λ ∣ = ( λ + 1 ) ∣ − 1 2 3 1 1 − λ 3 0 3 6 − λ ∣ = ( λ + 1 ) ∣ 0 3 − λ 6 1 1 − λ 3 0 3 6 − λ ∣ = − ( λ + 1 ) ∣ 3 − λ 6 3 6 − λ ∣ = − λ ( λ + 1 ) ( λ − 9 ) = 0 ⇒ λ 1 = 0 , λ 2 = − 1 , λ 3 = 9 \text{令} |A-\lambda E|=\left| \begin{matrix} 1-\lambda & 2 & 3\\ 2&1-\lambda & 3\\ 3 & 3 & 6-\lambda \end{matrix} \right|=\left| \begin{matrix} -1-\lambda & 2 & 3\\ \lambda+1&1-\lambda & 3\\ 0 & 3 & 6-\lambda \end{matrix} \right|=(\lambda+1)\left| \begin{matrix} -1 & 2&3\\ 1 & 1-\lambda & 3\\ 0& 3 & 6-\lambda \end{matrix} \right|\\ =(\lambda+1)\left| \begin{matrix} 0 &3- \lambda& 6\\ 1 & 1-\lambda & 3\\ 0& 3 & 6-\lambda \end{matrix} \right|=-(\lambda+1)\left| \begin{matrix} 3- \lambda& 6\\ 3 & 6-\lambda \end{matrix} \right|=-\lambda(\lambda +1)(\lambda-9)=0\\ \Rightarrow \lambda_1=0,\lambda_2=-1,\lambda_3=9 AλE= 1λ2321λ3336λ = 1λλ+1021λ3336λ =(λ+1) 11021λ3336λ =(λ+1) 0103λ1λ3636λ =(λ+1) 3λ366λ =λ(λ+1)(λ9)=0λ1=0,λ2=1,λ3=9

1) λ 1 = 0 \lambda_1=0 λ1=0时,
( 1 2 3 2 1 3 3 3 6 ) → ( 1 2 3 0 − 3 − 3 0 − 3 − 3 ) → ( 1 2 3 0 1 1 0 0 0 ) → ( 1 0 1 0 1 1 0 0 0 ) ⇒ p 1 = ( − 1 − 1 1 ) \left( \begin{matrix} 1 & 2 &3\\ 2&1& 3\\ 3 & 3 & 6 \end{matrix} \right)\to \left( \begin{matrix} 1 & 2&3\\ 0&-3& -3\\ 0 & -3 & -3 \end{matrix} \right)\to \left( \begin{matrix} 1 & 2&3\\ 0&1& 1\\ 0 & 0 & 0 \end{matrix} \right)\to \left( \begin{matrix} 1 & 0&1\\ 0&1& 1\\ 0 & 0 & 0 \end{matrix} \right)\Rightarrow p_1=\left( \begin{matrix} -1\\ -1\\ 1 \end{matrix} \right) 123213336 100233333 100210310 100010110 p1= 111

2) λ 2 = − 1 \lambda_2=-1 λ2=1时,
( 2 2 3 2 2 3 3 3 7 ) → ( 1 1 3 2 0 0 0 0 0 5 2 ) → ( 1 1 0 0 0 1 0 0 0 ) ⇒ p 2 = ( − 1 1 0 ) \left( \begin{matrix} 2 & 2 &3\\ 2&2& 3\\ 3 & 3 & 7 \end{matrix} \right)\to \left( \begin{matrix} 1 & 1&\frac{3}{2}\\ 0&0& 0\\ 0 & 0 & \frac{5}{2} \end{matrix} \right)\to \left( \begin{matrix} 1 & 1&0\\ 0&0& 1\\ 0 & 0 & 0 \end{matrix} \right)\Rightarrow p_2=\left( \begin{matrix} -1\\ 1\\ 0 \end{matrix} \right) 223223337 10010023025 100100010 p2= 110

3) λ 3 = 9 \lambda_3=9 λ3=9时,
( − 8 2 3 2 − 8 3 3 3 − 3 ) → ( 1 1 − 1 2 − 8 3 − 8 2 3 ) → ( 1 1 − 1 0 − 10 5 0 10 − 5 ) → ( 1 1 − 1 0 1 − 1 2 0 0 0 ) → ( 1 0 − 1 2 0 1 − 1 2 0 0 0 ) ⇒ p 3 = ( 1 1 2 ) \left( \begin{matrix} -8 & 2 &3\\ 2&-8& 3\\ 3 & 3 & -3 \end{matrix} \right)\to \left( \begin{matrix} 1 & 1&-1\\ 2&-8& 3\\ -8 & 2 &3 \end{matrix} \right)\to \left( \begin{matrix} 1 & 1&-1\\ 0&-10& 5\\ 0 & 10 & -5 \end{matrix} \right)\to \left( \begin{matrix} 1 & 1&-1\\ 0&1& -\frac{1}{2}\\ 0 & 0 & 0 \end{matrix} \right)\to \left( \begin{matrix} 1 & 0&-\frac{1}{2}\\ 0&1& -\frac{1}{2}\\ 0 & 0 & 0 \end{matrix} \right)\Rightarrow p_3=\left( \begin{matrix} 1\\ 1\\ 2 \end{matrix} \right) 823283333 128182133 10011010155 1001101210 10001021210 p3= 112

(3)
令 ∣ A − λ E ∣ = 0 = ∣ − λ 0 0 1 0 − λ 1 0 0 1 − λ 0 1 0 0 − λ ∣ = ∣ − λ 0 0 1 0 − λ 1 0 0 1 − λ 0 1 − λ 2 0 0 0 ∣ = − ∣ 0 − λ 1 0 1 − λ 1 − λ 2 0 0 ∣ = ( λ 2 − 1 ) ∣ − λ 1 1 − λ ∣ = ( λ 2 − 1 ) 2 ⇒ λ 1 = λ 2 = − 1 , λ 3 = λ 4 = 1 \text{令} |A-\lambda E|=0=\left| \begin{matrix} -\lambda & 0 & 0&1\\ 0&-\lambda & 1&0\\ 0 & 1 & -\lambda &0\\ 1&0&0&-\lambda \end{matrix} \right|=\left| \begin{matrix} -\lambda & 0 & 0&1\\ 0&-\lambda & 1&0\\ 0 & 1 & -\lambda &0\\ 1-\lambda^2&0&0&0 \end{matrix} \right|=-\left| \begin{matrix} 0&-\lambda & 1\\ 0 & 1 & -\lambda\\ 1-\lambda^2&0&0 \end{matrix} \right|\\ =(\lambda^2-1)\left| \begin{matrix} -\lambda & 1\\ 1 & -\lambda \end{matrix} \right|=(\lambda^2-1)^2\\ \Rightarrow \lambda_1=\lambda_2=-1,\lambda_3=\lambda_4=1 AλE=0= λ0010λ1001λ0100λ = λ001λ20λ1001λ01000 = 001λ2λ101λ0 =(λ21) λ11λ =(λ21)2λ1=λ2=1,λ3=λ4=1

1) λ 1 = λ 2 = − 1 \lambda_1=\lambda_2=-1 λ1=λ2=1时,
( 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 ) → ( 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 ) ⇒ p 1 = ( 0 − 1 1 0 ) , p 2 = ( − 1 0 0 1 ) \left( \begin{matrix} 1 & 0 &0&1\\ 0&1& 1&0\\ 0&1& 1&0\\ 1 & 0 &0&1 \end{matrix} \right)\to \left( \begin{matrix} 1 & 0 &0&1\\ 0&1& 1&0\\ 0&0& 0&0\\ 0& 0 &0&0 \end{matrix} \right)\Rightarrow p_1=\left( \begin{matrix} 0\\ -1\\ 1\\ 0 \end{matrix} \right),p_2=\left( \begin{matrix} -1\\ 0\\ 0\\ 1 \end{matrix} \right) 1001011001101001 1000010001001000 p1= 0110 ,p2= 1001

2) λ 3 = λ 4 = 1 \lambda_3=\lambda_4=1 λ3=λ4=1时,
( − 1 0 0 1 0 − 1 1 0 0 1 − 1 0 1 0 0 − 1 ) → ( 1 0 0 − 1 0 1 − 1 0 0 0 0 0 0 0 0 0 ) ⇒ p 3 = ( 0 1 1 0 ) , p 4 = ( 1 0 0 1 ) \left( \begin{matrix} -1 & 0 &0&1\\ 0&-1& 1&0\\ 0&1&-1&0\\ 1 & 0 & 0&-1 \end{matrix} \right)\to \left( \begin{matrix} 1 & 0 &0&-1\\ 0&1& -1&0\\ 0&0&0&0\\ 0 & 0 & 0&0 \end{matrix} \right)\Rightarrow p_3=\left( \begin{matrix} 0\\ 1\\ 1\\ 0 \end{matrix} \right),p_4=\left( \begin{matrix} 1\\ 0\\ 0\\ 1 \end{matrix} \right) 1001011001101001 1000010001001000 p3= 0110 ,p4= 1001

5、已知 p = ( 1 1 − 1 ) p=\left( \begin{matrix} 1\\ 1\\ -1 \end{matrix} \right) p= 111 是矩阵 A = ( 2 − 1 2 5 a 3 − 1 b − 2 ) A=\left( \begin{matrix} 2 & -1 &2\\ 5&a&3\\ -1 & b&-2 \end{matrix} \right) A= 2511ab232 的一个特征向量。
(1)求参数 a , b a,b a,b及特征向量 p p p所对应的特征值;
(2)问 A A A可否对角化?

解: A p = λ p ⇒ ( A − λ E ) p = 0 Ap=\lambda p\Rightarrow (A-\lambda E)p=0 Ap=λp(AλE)p=0
( 2 − λ − 1 2 5 a − λ 3 − 1 b − 2 − λ ) ( 1 1 − 1 ) = ( 0 0 0 ) ⇒ { − λ − 1 = 0 2 + a − λ = 0 1 + b + λ = 0 ⇒ { λ = − 1 a = − 3 b = 0 \left( \begin{matrix} 2-\lambda & -1 & 2\\ 5 & a-\lambda &3\\ -1&b&-2-\lambda \end{matrix} \right)\left( \begin{matrix} 1\\ 1\\ -1 \end{matrix} \right)=\left( \begin{matrix} 0\\ 0\\ 0 \end{matrix} \right)\Rightarrow \begin{cases} -\lambda-1=0\\ 2+a-\lambda=0\\ 1+b+\lambda=0 \end{cases}\Rightarrow \begin{cases} \lambda=-1\\ a=-3\\ b=0 \end{cases} 2λ511aλb232λ 111 = 000 λ1=02+aλ=01+b+λ=0 λ=1a=3b=0

(2)
令 ∣ A − λ E ∣ = 0 = ∣ 2 − λ − 1 2 5 − 3 − λ 3 − 1 0 − 2 − λ ∣ = ∣ 2 − λ − 1 λ 2 − 2 5 − 3 − λ − 5 λ − 7 − 1 0 0 ∣ = ∣ − 1 λ 2 − 2 3 + λ 5 λ + 7 ∣ = ∣ − 1 λ 2 − 1 3 + λ 4 λ + 4 ∣ = ( λ + 1 ) ∣ − 1 λ − 1 3 + λ 4 ∣ = − ( λ + 1 ) 3 ⇒ λ 1 = λ 2 = λ 3 = − 1 ( 3 − 1 2 5 − 2 3 − 1 0 − 1 ) → ( 1 0 1 0 − 2 − 2 0 − 1 − 1 ) → ( 1 0 1 0 1 1 0 0 0 ) ⇒ p = ( − 1 − 1 1 ) 无3个线性无关的特征向量 ⇒ 不可对角化 \text{令} |A-\lambda E|=0=\left| \begin{matrix} 2-\lambda &-1&2\\ 5&-3-\lambda &3\\ -1&0&-2-\lambda \end{matrix} \right|=\left| \begin{matrix} 2-\lambda &-1&\lambda^2-2\\ 5&-3-\lambda &-5\lambda-7\\ -1&0&0 \end{matrix} \right|=\left| \begin{matrix} -1&\lambda^2-2\\ 3+\lambda&5\lambda+7 \end{matrix} \right|\\ =\left| \begin{matrix} -1&\lambda^2-1\\ 3+\lambda&4\lambda+4 \end{matrix} \right|=(\lambda+1)\left| \begin{matrix} -1&\lambda-1\\ 3+\lambda&4 \end{matrix} \right|=-(\lambda+1)^3\\ \Rightarrow \lambda_1=\lambda_2=\lambda_3=-1\\ \left( \begin{matrix} 3 & -1 & 2\\ 5 & -2&3\\ -1&0&-1 \end{matrix} \right)\to \left( \begin{matrix} 1 &0 & 1\\ 0 & -2&-2\\ 0&-1&-1 \end{matrix} \right)\to \left( \begin{matrix} 1 &0 & 1\\ 0 & 1&1\\ 0&0&0 \end{matrix} \right) \Rightarrow p=\left( \begin{matrix} -1\\ -1\\ 1 \end{matrix} \right)\\ \text{无3个线性无关的特征向量} \Rightarrow\text{不可对角化} AλE=0= 2λ5113λ0232λ = 2λ5113λ0λ225λ70 = 13+λλ225λ+7 = 13+λλ214λ+4 =(λ+1) 13+λλ14 =(λ+1)3λ1=λ2=λ3=1 351120231 100021121 100010110 p= 111 3个线性无关的特征向量不可对角化

相似矩阵

A , B A,B A,B均是 n n n阶矩阵,若有可逆矩阵 P P P,使:
P − 1 A P = B P^{-1}AP=B P1AP=B
B B B A A A相似矩阵

性质

1、若 n n n阶矩阵 A A A B B B相似,则:
⇒ A 与 B 的特征值相同 \Rightarrow A\text{与}B\text{的特征值相同} AB的特征值相同

2、若 n n n阶矩阵 A A A与对角阵
Λ = ( λ 1 0 0 ⋯ 0 0 λ 2 0 ⋯ 0 ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ λ n ) \Lambda=\left( \begin{matrix} \lambda_1 & 0 & 0 &\cdots &0\\ 0& \lambda_2 & 0 &\cdots &0\\ \vdots&\vdots & \vdots & &\vdots\\ 0& 0& 0&\cdots &\lambda_n \end{matrix} \right) Λ= λ1000λ2000000λn
相似,则 λ 1 , λ 2 , ⋯   , λ n \lambda_1,\lambda_2,\cdots,\lambda_n λ1,λ2,,λn A A A n n n特征值
P − 1 A P = Λ P^{-1}AP=\Lambda P1AP=Λ

3、 n n n阶矩阵 A A A与对角阵相似的充要条件
⇔ A 有 n 个线性无关的特征向量 \Leftrightarrow A\text{有}n\text{个线性无关的特征向量} An个线性无关的特征向量

4、若 A A A n n n个特征值互不相等:
⇒ A 与对角阵相似 \Rightarrow A\text{与对角阵相似} A与对角阵相似

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值