使用字段格式化来自定义SharePoint(五)

博客地址:http://blog.csdn.net/FoxDave

创建简单的数据视觉效果

使用字段格式化来将条件和算法的操作整合来完成基本的数据视觉效果。
将数字字段格式化为日期条(高级)
下图展示了将数字字段格式化为日期条的效果。
这里写图片描述
本例应用background-color和border-top样式类来创建当前数字字段@currentField日期条视觉效果。不同的值会通过设置图形条的宽度(width)属性来展示,当值大于95时会设置为100%,否则设置为(@currentField*100/95)%。那么我们如何在我们的数字字段上应用它呢?我们可以将边界条件调整为字段的最大期望值,如20,然后更改计算式去指定基于字段值的图形条应该如何增长。

{
  "$schema": "https://developer.microsoft.com/json-schemas/sp/column-formatting.schema.json",
  "elmType": "div",
  "txtContent": "@currentField",
  "attributes": {
    "class": "sp-field-dataBars"
  },
  "style": {
    "width": "=if(@currentField > 95, '100%', toString(@currentField * 100 / 95) + '%'"
  }
}

展示向上/向下趋势图标(高级)
下图展示的是添加了趋势图标的列表:
这里写图片描述
本例依靠两个数字字段Before和After,用于比较数据。如果After比Before的值大,则使用sp-field-trending–up样式,否则使用sp-field-trending–down样式。

{
    "$schema": "https://developer.microsoft.com/json-schemas/sp/column-formatting.schema.json",
    "elmType": "div",
    "children": [
        {
            "elmType": "span",
            "attributes": {
                "class": {
                    "operator": "?",
                    "operands": [
                        {
                            "operator": ">",
                            "operands": [ "[$After]", "[$Before]" ] },
                        "sp-field-trending--up",
                        "sp-field-trending--down"
                    ]
                },
                "iconName": {
                    "operator": "?",
                    "operands": [
                        {
                            "operator": ">",
                            "operands": [ "[$After]", "[$Before]" ] },
                        "SortUp",
                        {
                            "operator": "?",
                            "operands": [ { "operator": "<", "operands": [ "[$After]", "[$Before]" ] }, "SortDown", "" ] }
                    ]
                }
            }
        },
        {
            "elmType": "span",
            "txtContent": "[$After]"
        }
    ]
}
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值