csp m2 HRZ 的序列

题意:

题目描述
相较于咕咕东,瑞神是个起早贪黑的好孩子,今天早上瑞神起得很早,刷B站时看到了一个序列 ,他对这个序列产生了浓厚的兴趣,他好奇是否存在一个k数 ,使得一些数加上k ,一些数减去 k,一些数不 变,使得整个序列中所有的数相等,其中对于序列中的每个位置上的数字,至多只能执行一次加运算或 减运算或是对该位置不进行任何操作。由于瑞神只会刷B站,所以他把这个问题交给了你!

输入格式
输入第一行是一个正整数 表示数据组数。 接下来对于每组数据,输入的第一个正整数 表示序列 的长 度,随后一行有 个整数,表示序列 。

输出格式
输出共包含 行,每组数据输出一行。对于每组数据,如果存在这样的K,输出"YES",否则输出“NO”。 (输出不包含引号)

样例输入
2
5
1 2 3 4 5
5
1 2 3 4 5
样例输出
NO
NO

在这里插入图片描述


思路:

若是经历过某些数加上K,某些数减去K ,某些数不变的操作后所有的数都相等,那么数列中最多只有三个不同的数。若是出现了三个以上的数则一定不存在。当值出现一个或两个数时,一定成功,而当三个数的时候则要满足大小位于中间的那个数是最小的数和最大的数的中位数,只有这样才能满足最小的数+K = 最大的数 - K = 大小位于中间的数。


代码:


#include<stdio.h>
#include<algorithm>
long long number[10005];


int main()
{
	int t;
	scanf("%d", &t);
	while(t--!=0)
	{
		int n;
		scanf("%d", &n);
		for (int i = 0; i < n; i++)
			scanf("%lld", &number[i]);
		long long x[3];
		int tot = 0;
		bool onelayer = true;
		for (int i = 0; i < n && onelayer; i++)
		{
			bool judge = true;
			for (int k = 0; k < tot && judge; k++)
			{
				if (number[i] == x[k])
					judge = false;
			}
			if (judge)//如果还没有出现过
			{
				if (tot > 2)onelayer = false;
				else
				{
					x[tot] = number[i];
					tot++;
				}
			}
		}

		if (onelayer)
		{
			if (tot == 2 || tot == 1 )printf("YES\n");
			else //只有三个数
			{
				std::sort(x, &x[3]);
				if(x[0] + x[2] == 2*x[1])printf("YES\n");
				else printf("NO\n");
			}

		}
		else
		{
			printf("NO\n");
		}
	}
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: csp202112-2 序列查询新解是一种优化算法,用于在给定序列中快速查找指定元素的位置。该算法采用了二分查找和哈希表的结合,能够在较短的时间内完成查询操作。 具体实现方式为:首先将序列分成若干个块,每个块的大小为 $B$。对于每个块,使用哈希表记录其中的元素及其位置。然后对于查询操作,先在哈希表中查找元素是否在当前块中,如果存在,则直接返回其位置;否则,在整个序列中使用二分查找找到该元素所在的块,然后再在该块中使用哈希表查找。 该算法的时间复杂度为 $O(\frac{n}{B}+B\log B)$,其中 $n$ 为序列长度,$B$ 为块的大小。当 $B=\sqrt{n}$ 时,时间复杂度为 $O(\sqrt{n}\log\sqrt{n})$,比传统的二分查找算法更快。 需要注意的是,该算法需要额外的空间来存储哈希表,因此在空间有限的情况下可能不适用。同时,对于元素分布不均匀的序列,哈希表的效率可能会受到影响。 ### 回答2: csp202112-2 序列查询新解是一道CSP-S 2021年12月模拟赛的考试题目。这道题目要求我们实现一个序列查询的新解法,其中包括两个部分:前缀和和倍增。 在前缀和中,我们需要首先对于给定的序列进行预处理,生成一个新的序列S,其中S[i]表示原序列中从1到i的所有数的和。接着,对于每个查询,我们可以利用预处理得到的S数组,利用前缀和的思想,求出区间[L,R]内所有数的和。这种方法的时间复杂度可以优化到O(1)。 在倍增中,我们利用一种名为ST表的数据结构,对于每个数列进行预处理,生成一个二维数组st[i][j],其中st[i][j]表示从i开始的2^j个数的最大值。接着,对于每个查询,我们根据输入的区间[L,R],找到最大的k,使得2^k不大于区间长度。然后利用ST表,找到区间[L,L+2^k-1]和区间[R-2^k+1,R]的最大值,再求这两个区间的最大值即可。这种方法的时间复杂度可以优化到O(log n)。 总的来说,这道题目考察了我们对于前缀和和倍增的理解,能够熟练地运用这两种算法解决具体的问题。同时,这种题目还考验了我们的程序设计能力和实现能力。需要注意的是,在具体的编程实现过程中,一定要注意细节问题,比如数组越界、数据类型转换等等。只有细致并且严谨的实现过程,才能保证程序的正确性和稳定性。 ### 回答3: csp202112-2 题目要求我们实现一种新的序列查询方式,以便更加高效地进行序列操作。 传统的序列查询方式包括线性遍历和二分查找。线性遍历的时间复杂度为O(n),对于大规模的数据操作效率较低。而二分查找需要将序列进行排序,并且在某些情况下可能需要重复查询,导致查询效率下降。 为了解决这些问题,我们需要采用一种新的序列查询方式。根据题目要求,我们可以进行如下考虑: 1.使用哈希表存储序列元素,以便快速进行查询,时间复杂度为O(1)。但是需要注意的是,哈希表中可能存在哈希冲突的情况,需要进行解决。 2.使用平衡二叉树进行序列元素的存储和查询,时间复杂度为O(logn),并且可以支持动态的元素插入和删除操作。 3.使用堆进行序列的维护和查询,堆支持常数时间内的插入和删除操作,时间复杂度为O(logn)。 以上这些方式都可以用来优化序列查询操作,选择合适的方式取决于具体的应用场景和数据特点。 总之,csp202112-2 题目要求我们学习和应用新的序列查询方式,以提高数据处理效率,为实际应用提供更加优质的数据支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值