每日一题(2020年C/C++ B组第二场省赛第二题填空题)

这里是蓝桥杯历年的题目,欢迎关注公众号“放码过来呀”

题目名称:既约分数.

题目描述:

如果一个分数的分子和分母的最大公约数是1,这个分数称为既约分数。例如,3/4,5/2,1/8,7/1都是既约分数。请问,有多少个既约分数,分子和分母都是1到2020之间的整数(包括1和2020)

题目答案:2481215

题目分析:

1.暴力,1到2020遍历,依次判断是否满足既约分数

2.既约分数分数的判断可以借助辗转相除法(不懂的自行百度)

题目代码:

#include<iostream>
using namespace std;
int nub(int a,int b)
{  
  if(a%b==0)
    return b;
  else
    nub(b,a%b);  
}  //辗转相除法:两数取余
  //第一次的除数做下一次的被除数,第一次的余数做下一次的除数
  //直到余数为0,此时的除数为最大公约数 
int main ()
{
  int a,b,ans=0;
  for(a=1;a<=2020;a++)
  for(b=1;b<=2020;b++)
  //所有可能遍历,依次判断 
  {
    if(nub(a,b)==1)
      ans++;
  //判断最大公约数是否为1,进行累加    
  }
  cout<<ans<<endl;
  return 0;
}

运行结果:

图片

补充: 欧几里得算法又称辗转相除法,是指用于计算两个非负整数a,b的最大公约数。应用领域有数学和计算机两个方面。计算公式gcd(a,b) = gcd(b,a mod b)。

假如需要求 1997 和 615 两个正整数的最大公约数,进行如下计算:

1997 / 615 = 3 (余 152)

615 / 152 = 4(余7)

152 / 7 = 21(余5)

7 / 5 = 1 (余2)

5 / 2 = 2 (余1)

2 / 1 = 2 (余0)

至此,最大公约数为1

以除数和余数反复做除法运算,当余数为 0 时,取当前算式除数为最大公约数,所以就得出了 1997 和 615 的最大公约数 1。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值