这里是蓝桥杯历年的题目,欢迎关注公众号“放码过来呀”
题目名称:既约分数.
题目描述:
如果一个分数的分子和分母的最大公约数是1,这个分数称为既约分数。例如,3/4,5/2,1/8,7/1都是既约分数。请问,有多少个既约分数,分子和分母都是1到2020之间的整数(包括1和2020)
题目答案:2481215
题目分析:
1.暴力,1到2020遍历,依次判断是否满足既约分数
2.既约分数分数的判断可以借助辗转相除法(不懂的自行百度)
题目代码:
#include<iostream>
using namespace std;
int nub(int a,int b)
{
if(a%b==0)
return b;
else
nub(b,a%b);
} //辗转相除法:两数取余
//第一次的除数做下一次的被除数,第一次的余数做下一次的除数
//直到余数为0,此时的除数为最大公约数
int main ()
{
int a,b,ans=0;
for(a=1;a<=2020;a++)
for(b=1;b<=2020;b++)
//所有可能遍历,依次判断
{
if(nub(a,b)==1)
ans++;
//判断最大公约数是否为1,进行累加
}
cout<<ans<<endl;
return 0;
}
运行结果:
补充: 欧几里得算法又称辗转相除法,是指用于计算两个非负整数a,b的最大公约数。应用领域有数学和计算机两个方面。计算公式gcd(a,b) = gcd(b,a mod b)。
假如需要求 1997 和 615 两个正整数的最大公约数,进行如下计算:
1997 / 615 = 3 (余 152)
615 / 152 = 4(余7)
152 / 7 = 21(余5)
7 / 5 = 1 (余2)
5 / 2 = 2 (余1)
2 / 1 = 2 (余0)
至此,最大公约数为1
以除数和余数反复做除法运算,当余数为 0 时,取当前算式除数为最大公约数,所以就得出了 1997 和 615 的最大公约数 1。