图中割点、割边的理解

割点集合
在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成多个连通块,就称这个点集为割点集合。(一般是有多个顶点组成)
割边集合
在一个无向连通图中,如果有一个边集合,删除这个边集合以后,原图变成多个连通块,就称这个点集为割边集合。(一般有多个边组成)
点连通度
一个图的点连通度的定义为,最小割点集合中的顶点数
边连通度
一个图的边连通度的定义为,最小割边集合中的边数。
双连通图
如果一个无向连通图的点/边连通度大于1,则称该图是点/边双连通的(biconnected),简称双连通或重连通
割点
一个图有割点,当且仅当这个图的点连通度为1,则割点集合的唯一元素被称为割点(cut point),又叫关节点(articulation point)。

一个图有桥,当且仅当这个图的边连通度为1,则割边集合的唯一元素被称为桥(bridge),又叫关节边(articulation edge)。(也有人称为割边….)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值