点云从入门到精通技术详解100篇
文章平均质量分 92
从基础讲起,包含点云当前的技术应用,包含以下知识要点:点云滤波(数据预处理)、点云关键点、特征和特征描述、点云配准、点云分割与分类、SLAM图优化、目标识别检索、变化检测、三维重建、
点云数据管理
优惠券已抵扣
余额抵扣
还需支付
¥39.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
格图素书
绰约多逸态,轻盈不自持。常矜绝代色,复恃倾城姿。
展开
-
点云从入门到精通技术详解100篇-基于结构光测量的三维人脸重建及识别(下)
因此为了提高网络的识别性能,受到[ 10,259,266]的鼓舞,本文计算提取各个三 维坐标点的深度信息,法线的方位角和俯仰角作为新的三维人脸表征。同时使 用网格拟合算法将这三种几何信息插值生成至二维图像的三通道里(如图5-3(b) 所示)。具体的说,首先通过前述步骤将不同姿态的三维人脸对齐到基准坐标空。原创 2024-11-11 00:30:00 · 29 阅读 · 0 评论 -
点云从入门到精通技术详解100篇-基于结构光测量的三维人脸重建及识别(中)
88]指出三维成像系统的标定是投影 光栅系统的关键,最终重建的三维形貌质量受系统标定的准确性影响。后者是将物体 表面点上的相位值当作立体匹配中的同名点,相位差/相位值并不直接参与高度 值的计算,本身是作为多目相机之间寻找像素点对应关系的媒介。综上所述,相高模型主要关注的是相位/相位差与高度的函数关系,通常不 考虑与水平坐标之间的关系,虽然有相关研究[ 96]提出了一些相位到三维转变的 相高模型,但无疑增加了标定的复杂度。因此基于三 角立体模型的三维成像系统标定包括相机模组的标定和投影模组的标定。原创 2024-11-08 00:30:00 · 53 阅读 · 0 评论 -
点云从入门到精通技术详解100篇-基于结构光测量的三维人脸重建及识别
随着信息技术的发展,依据生物个体特征的身份检测及鉴别技术受到越来 越多的关注和研究,相关研究成果也正向地推动了国家社会的发展。目前已提 出多种生物特征识别技术,但都存在一些不可避免的缺陷。目前常用的有:指 纹识别速度快、可靠性高,但指纹容易受到污染;虹膜识别精度高、难以复制 修改,但其使用成本高;静脉识别安全等级高、抗干扰性好,但手部静脉存在 随年龄及生理改变而改变的可能性;声纹识别获取方便、采集设备成本低,但 易受环境干扰;笔迹识别容易被接受,但受访者主观上能够刻意改变所写字 形;原创 2024-11-05 15:01:45 · 54 阅读 · 0 评论 -
点云从入门到精通技术详解100篇-基于卷积和注意力机制的3D点云特征提取(续)
在该部分我们提出了一种基于密度的特征表示方法,用于从体素数据中学习特 征。为了方便点云特殊形式的处理,根据体素密度的特点设计了三维卷积网络。应 用特定的模块来提高性能。通过实验对比可以看出模块的有效性。部分研究人员[31]将MVCNN网络与VoxNet网络进行了比较,指出网络在处理 体素数据时发生过拟合,这是由于全连接层中参数过多造成的。因此,他们提出采 用使用辅助训练器的方法来缓解过拟合,同时在我们的模型中也采用了这一策略。原创 2024-07-04 00:30:00 · 331 阅读 · 0 评论 -
点云从入门到精通技术详解100篇-基于卷积和注意力机制的3D点云特征提取
自从AlexNet[1]在图像分类方面取得了巨大的进展后,几乎全面超越了计算 机视觉中所有领域的传统方法,因此人们提出了广泛的研究,卷积神经网络也在 图像领域不断的得到改善,达到了如今的普及程度。虽然深度学习的深层次的原 理尚不明确,但由于所提出的模型相比于传统方法具有突出的性能,因此得到了 有效的应用。在图像处理领域,卷积是二维特征提取的主要和主导技术。虽然已 经提出了其他有效的操作,但它们可以被视为卷积的扩展[2]。迄今为止,已经提 出了各种性能较强的网络,卷积是这些模型中不可替代的基本单元。原创 2024-06-30 00:30:00 · 282 阅读 · 0 评论 -
点云从入门到精通技术详解100篇-基于超体素类型的三维点云区域生长分割(续)
点云分割是将点云数据中空间上相近的点按照一定的规则划分到不同的子 集的过程。分割结果的质量对后续点云分类、识别等操作有着极大的影响。为了 能够对点云数据进行高质量高效率的分割,本文在现有算法的基础上进行改进, 提出了一种基于超体素类型和区域生长的点云分割算法,提高了点云分割的速度 和质量。如图3.1所示,算法整体分为四个部分:首先是输入层,算法使用原始点云数据作为输入,仅利用点的空间坐标计算 出几何特征进行分割,而无需使用颜色信息和反射强度等额外属性。为了获得能够保持物体边界的超体素,并且提高算法的效率原创 2024-06-01 00:30:00 · 230 阅读 · 1 评论 -
点云从入门到精通技术详解100篇-基于超体素类型的三维点云区域生长分割
点云在数据形态上是一组离散的多维数据集,它能有效地描述三维物体的形 状、尺寸和位置。点云数据除具有三维坐标之外,根据获取原理的不同还可能包 含颜色、光照强度和时间等信息[1]。与二维图像相比,三维点云有着较强的空间 表示能力,能够更好地表示物体的空间位置以及形状等信息,因此被广泛的应用 于无人驾驶[2]、三维重建[3]、虚拟现实[4]和遥感监测[5]等领域。但是,由于点云数据 是离散分布的,并不像二维图像一样具有纹理信息和规则的拓扑排列[6],所以对 点云数据的处理是更加复杂和更具挑战的。原创 2024-05-30 00:30:00 · 193 阅读 · 0 评论 -
点云从入门到精通技术详解100篇-基于无人机的建筑物精细化三维建模
随着数字城市和智慧城市建设的快速推进,三维城市信息已成为当今研究的热点。建 筑物作为城市区域的主要部分,其三维信息在城市规划和管理、虚拟城市旅游、城市灾害 变化检测[1-2]等领域有着越来越重要的应用,如何准确、精细获得全面建筑物的三维数据 并且利用采集的数据进行建筑物精细化重建是高质量城市信息化的关键。高分辨率、高质量的全面建筑物三维信息是建筑物精细化重建的基础,传统的建筑物 三维建模是通过人工地面测绘获得,软件对操作人员的能力要求高,自动化程度低,无法 获得建筑物的屋顶数据;原创 2024-05-14 00:30:00 · 307 阅读 · 0 评论 -
点云从入门到精通技术详解100篇-基于车载 LiDAR 的雨雪天气点云滤波算法研究(续)
在获取点云数据时,由于受到外界干扰如视线遮挡,障碍物等因素的影响,点云数据中存在着一些距离主题点云较远的离散点,即离散群点。如下图所示:由于设备采集或者障碍物遮挡等问题或导致在三维空间中出现零星的点集。原创 2024-05-14 00:30:00 · 286 阅读 · 1 评论 -
点云从入门到精通技术详解100篇-基于激光点云和视觉融合的智能车前方障碍物检测(下)
以上两个目标集合可以抽象成二分图,且视觉目标和点云目标的差异程度可以用作匹配的权值,将两个集合的目标匹配问题转化为二分图的最优匹配,本文。采集时间进行同步,这样能够保证融合节点读取的传感器信息是来自同一时刻的。因此在丢失相机探测数据的情况下,依然能够输出激光雷达的检测结果,对两个传感器的感知信息进行融合,提高融合检测和测距的精度,同时实现连续。感器探测到的目标列表不完全一致,需要根据两两之间的相关性,判断是否属于。同一目标的探测数据。需要根据目标跟踪算法预测当前帧的目标信息,结合当前帧的目标检测结果判断。原创 2024-04-09 00:30:00 · 253 阅读 · 0 评论 -
点云从入门到精通技术详解100篇-基于激光点云和视觉融合的智能车前方障碍物检测(中)
失值越低,模型的性能越好。根据不同模型的特点,往往需要设计不同的损失项,标,我们也同样在这个新的评价标准上对比我们的方法和现阶段性能最佳的方法。界框逐渐向真实边界框靠拢,获得最理想的检测框位置,准确的检测框位置是单。标的横向距离,另外动态情况下相机的姿态信息是变化的,因此本文提出了基于。安装的环境要求,并且充分考虑相机的姿态,减小了由相机姿态导致的误差,并。在车辆静止情况下,加速度计通过固定的重力加速度,获取的三轴加。的障碍物,并分别用上述三种测距方法进行纵向和横向距离的测量,试验结果如。原创 2024-04-08 00:30:00 · 261 阅读 · 0 评论 -
点云从入门到精通技术详解100篇-基于激光点云和视觉融合的智能车前方障碍物检测
based 方法对点云中每个点的特征信息进行提取,检测的准确率高,但由于点云。次,激光雷达获取的点云数据是稀疏且无序的,而相机获取的是有序且稠密数据。中提到,要加快推进中国智能汽车发展,推进智能汽车新技术的研究,抢占智能。的发展有助于减少交通事故的发生,降低汽车带来的环境污染,同时能够缓解交。定的驾驶目的,同时在满足安全、舒适等情况下,对车辆下一步的行动作出决策。其中,相机由于其感知信息的稠密性,能够提供丰富的。能驾驶中有着优异的表现。融合各个传感器的有效感知信息,优势互补,也能解决单一传感器的应用缺陷。原创 2024-04-07 00:30:00 · 1140 阅读 · 0 评论 -
点云从入门到精通技术详解100篇-基于点云与图像纹理的 道路识别(续)
值滤波直接进行取均值运算,高斯滤波是求取模板中选定部分像素点的加权平均值,取。结构规则,而非道路区域纹理特征丰富,结构不规则,二者对比明显。系在一起,形成三维特征,并运用于邻域像素点与聚类中心的距离相似度估算过程中,道路分割时,能更好的应对气候、光照变化、路面阴影遮挡等外部干扰,适用面更广,道路分割时,对于高差变化频繁、高差变化大的路面具有更高效的识别效率,更好的抗。在一般意义上,把图形在微观上的不规则特征和在宏观上具有规律性的特征统称为。分析可知,均值滤波方法会造成边缘模糊,高斯滤波能够消除高斯噪声,原创 2024-04-07 00:30:00 · 203 阅读 · 0 评论 -
点云从入门到精通技术详解100篇-基于点云与图像纹理的 道路识别
非结构化道路周围环境复杂多变,路面状况参差不齐,容易受到雨雪等极端天气的影响,并且树木、草地等背景也会导致道路识别不易。路面很不规则,等级较低,且没有明显的标志线,很难用一个或几个通用的模型来表示,方法,首先对图像进行分块处理,然后根据道路边缘颜色和灰度的均匀性和相似性特征,改革开放后,我国的汽车制造行业也蓬勃发展,根据官方数据显示,境污染、能源危机等,其中,交通事故的影响最为严峻。引起事故的因素多种多样,包。导致的遇难者数量,同时还能够挽回巨大的经济财产损失,这也是近年来自动驾驶车辆。原创 2024-04-06 00:30:00 · 355 阅读 · 0 评论 -
点云从入门到精通技术详解100篇-点云模型几何特征的结构化(续)
影响,因此,需要进一步对特征提取结果进行处理,以获取最能表达整个点云模型的特。采用规则点云的线性延长算法对杂乱点云进行线性延长,存在诸多的不足之处。地方出现点云不连续的情况,而在这些不连续处的点云分布较为杂乱,存在着锯齿状、因此,本文在特征线提取过程中,对特征点进行连接并适当地延长,云模型中大部分特征线,其中包括物体的尖锐特征,如桌子边缘、场景的边界、画框中。也包括了一些曲面的特征,如椅子的扶手,窗帘的凹凸特征等。内的近邻点大致相同,邻域内点的特征描述符与特征区域的特征描述符基本相似,提。原创 2024-04-04 00:30:00 · 139 阅读 · 0 评论 -
点云从入门到精通技术详解100篇-点云模型几何特征的结构化
几何特征点(包括凹、凸和表面边界),对其进行后处理,得到细化后的特征点;的凹、凸和表面边界特征,通过特征点细化以及特征线拟合得到结构化的几何特征线。高的点云采样质量,并且在处理海量的点云数据时,较高的计算成本也是局限性之一。进行叠加,根据叠加的数量和叠加结果来判断边界点,该方法适用于均匀分布的点云。为主,所以采用基于平面拟合的方法来对建筑物表面进行特征线提取也是较好的选择。在此基础上阐述了两种经典的点云特征提取方法,对每一类的原理进行了解释,分布均匀,但是处于边缘部分的点,分布较散,密度不一。原创 2024-03-29 09:04:47 · 215 阅读 · 0 评论 -
点云从入门到精通技术详解100篇-基于参数平面拉伸的点云流形攻击(续)
攻击方法攻击分类网络后,根据分类网络的各项指标变化来判断攻击性能优劣,为此,此外,在评测的过程中,计算了每种攻击方法生成对抗样本的时间,可以近一步分析不。该模块提供了易于使用的点云对抗攻击界面,用户可以根据自己的需求。每种攻击方法都设置了可调整的参数,如点删除攻击中可设置点删除的数量;查看不同分类器识别对抗点云的识别结果,由此分析攻击算法的可迁移性。网络的各项指标、攻击算法生成对抗样本时间和攻击后各个类别的识别准确率折线图,算法,然后攻击指定分类器生成对抗点云,接着可以切换不同的分类模型对已生成的对。原创 2024-03-28 00:30:00 · 142 阅读 · 0 评论 -
点云从入门到精通技术详解100篇-基于参数平面拉伸的点云流形攻击
了变化,但是点云的形状并未发生变化,这就点云的无序性,也称作点云的置换不变性。外的数据处理,而这些处理会给计算机带来较大的计算负担,尤其是在实时性要求高的。点云数据是物体表面的一系列三维坐标点的集合,不仅仅可以包含点的坐标信。息,同时也可以包含点的反射强度、颜色、法向量等。理与理解的深度神经网络,研究者同样可以利用深度神经网络实现对点云的分类、目标。度学习模型的脆弱性成为了它在现实世界中部署的障碍,特别是在自动驾驶、人脸识别。先,通过对深度神经网络模型的攻击,可以分析模型存在的脆弱性和安全性问题,即只。原创 2024-03-26 00:30:00 · 344 阅读 · 0 评论 -
点云从入门到精通技术详解100篇-基于3D点云的盘类元件识别与定位(续)
本实验采 用PC机安装64位的Windows 10操作系统,配置为Intel Core i5-9500CPU、3.0GHz、 16GB内存,使用的汇编语言为C++,应用平台为64位的VS2017,开发环境为点云 库PCL1.8.1。由于上述传统算法的分割结果在很大程度上取决于初始种子点的选取,并且传统 区域生长算法在进行点云分割时通常采用法向量阈值[ 54]获取初始种子点,容易出现 分割不稳定的现象。在进行点云曲率计算时,常见的方法有PCA(主成分分析法)以及最小二乘法 等。原创 2024-03-31 00:30:00 · 126 阅读 · 0 评论 -
点云从入门到精通技术详解100篇-基于3D点云的盘类元件识别与定位
点云分割过程是将整个点云划分为多个同质区域[ 48],同一范围内的点拥有类似 的属性。由于高冗余度、不均匀的采样密度以及各种类型零件点云的复杂性与差异性, 点云分割处理面临很大的挑战。常用的分割算法包括边缘分割法、聚类分割法、Hough 变换分割法、随机采样一致性分割法、区域生长分割法和基于机器学习的分割方法。采用边缘分割算法即使用边缘检测来确认不同区域的边界范围,然后对边界上的 点进行分组完成最终的分割[ 49]。原创 2024-03-30 00:30:00 · 149 阅读 · 0 评论 -
点云从入门到精通技术详解100篇-点云采样理论知识详解(续)
出一种点云的组合滤波算法。一点为中心的球邻域点的个数相较于桥梁建筑点云邻域个数要少得多,因此可以利用半。模型与半径滤波相结合,对植被点云进行双约束滤除,解决目标点云被误判为植被点云。算法首先利用高程信息分割点云,依次判断每一部分是否包含植被点云,对包含植被点。选择易区分目标点云与植被点云的波段作为颜色模型。云的部分利用改进的半径滤波算法去除植被点。为了提取完整的目标点云,需分析不同类型点云间的差异性分布,依据差异特征滤。目标点云分布均匀且邻域的密度相近,而散乱的植被点云具有分布参差,邻域密度。原创 2024-03-26 00:30:00 · 90 阅读 · 0 评论 -
点云从入门到精通技术详解100篇-点云采样理论知识详解
会出现分布、范围大小、来源各不相同的噪声点,学者们设计了更有针对性的滤波算法。绘制地物点云的高程频率直方图确定植被高程阈值,剔除植被点云,该方法虽易于操作,噪声的种类和数量随着采集环境的变化而变化,且噪声的存在会极大的影响目标。数据等问题,首先基于大型土木施工工地扫描的点云数据进行滤波采样提取目标点云。其次,基于深度学习对分布稀疏且不均匀的点云进行上采样操作,使其数据分布更均匀。基于此,利用点云的有效信息进行去噪、滤波、上采样等处理操作。噪声点是脱离目标物体的点,它不仅增加了点的数量,而且。原创 2024-03-22 00:30:00 · 194 阅读 · 0 评论 -
点云从入门到精通技术详解100篇-基于激光雷达点云的三维目标检测(续)
在本文中,主要使用的是框架下 SECOND 算法网络,由于其模块化设计的巨大优。所以,针对不同问题和不同数据,应该设计不同深度的卷积网络结构,显然,我们会把注意力更多投入到兔子的脸部、耳朵和身体区域。景又非常广泛,那么一般情况下就会得到非常好的训练模型,且具有很强的泛化能力,才会输出数据,这种计算方式,大大减少了对冗余数据的计算,提高了卷积运算效率。参数,通过网络不断地训练,不断地进行参数的调整,来拟合出输入数据与输出数据。级的特征,高层的卷积层可以在这些低级特征基础上,进一步进行特征提取和浓缩,原创 2024-03-19 00:30:00 · 150 阅读 · 0 评论 -
点云从入门到精通技术详解100篇-基于激光雷达点云的三维目标检测
不受光照、雨雪等恶劣天气的影响,是一种理想的、简单高效的检测网络模型。点云数据通过投影,转化为鸟瞰图,进行三维目标检测的方法,可以预测目标的位置、各种数据,不仅包含三维点云数据,还包与之对应的含白天和黑夜场景下的图像数据,的降低,汽车的自动驾驶技术得到了飞速发展,在我们的日常生活中经常能看到该技。和非自动驾驶汽车相比,自动驾驶汽车存在诸多优点,纷纷聚焦战略,不断推出更加完善的自动驾驶汽车,同时与高等院校合作,推出自动。一些,虽然存在部分技术上的困难,但可操作性强,时间成本更低,一旦成功便可进。原创 2024-03-18 00:30:00 · 670 阅读 · 0 评论 -
点云从入门到精通技术详解100篇-基于关键点提取的刚性点云配准(续)
数,因此采用了加权 SVD 的方法进行求解,本章节对该方法进行详细的介绍。编码器进行降采样的时,需要记录每个体素中丢弃的点的索引J ,根据索引的维。验设置的一致性,本文在关键点采样阶段使用了概率采样得到多组不同点的数据,的点云,而基于特征匹配的点云配准方法通常采用均匀采样来提高计算效率,但。出一种基于关键点提取的刚性点云配准方法,旨在采样重叠区域以内的点,降低。采样到重叠区域之外的无效点,增加有效点的数量,在提高特征匹配的效率的同。文采用了交叉最近邻匹配,加强了匹配的约束,进一步降低了点对的数量,提高。原创 2024-03-10 00:30:00 · 157 阅读 · 0 评论 -
点云从入门到精通技术详解100篇-基于关键点提取的刚性点云配准
含 4 个点的点集的优势在于,在经过刚性变换后,点集的一致性仍然会得到保证。坐标信息,也可能包含其他相关的信息,如:颜色、法向量、曲率和激光强度等。文提到的退火参数,用于控制匹配的锐化程度,退火参数越小,对应关系越精确。体素、包围球、最近邻等方法将空间中距离较近的点组织到一起得局部块的方法。分割网络的后半部分,点云分割网络的前半部分和点云分类网络的前半部分相同。中的点,进而得到点云。很显然,点云采集设备获取的点云数据是不完整的,这。部坐标系下的点云转换到世界坐标系中,并且保证各个点云的重叠区域拼接在一。原创 2024-03-09 00:30:00 · 211 阅读 · 0 评论 -
点云从入门到精通技术详解100篇-基于点云网络和 PSO 优化算法的手势估计(续)
点云数据,以完成图像的处理和转化。深度信息,实现三维重建和立体成像。本章侧重介绍本次研究实验过程中初步图像帧的处理和转化。虽然双目相机深度推导过程已经确定,但与此同时有一个更加急切的问题又。这三个点组成的空间被称为极平面,而极平面和图像的交线则被称为极。首先将左右两个相机位于理想中光轴平行的平面上,并且左右相机焦距。极线约束是指,根据左右成像的特点,如果。素点匹配的难度,提高立体成像的精度和效率。度图的获取、深度图转化点云等。双目深度摄像原理及深度图的获取。点,以达到现实点的统一匹配。原创 2024-03-04 00:30:00 · 1238 阅读 · 0 评论 -
点云从入门到精通技术详解100篇-基于点云网络和 PSO 优化算法的手势估计
和适应不同的手部姿态,并能够预测手部每个关节点的概率图或手部的三维坐标。类行为就成为了当今炙手可热的话题,同时人和计算机之间的交互也变为科研的。的交互时代,但是人类从不会主动停止对交互方式的探索。深度相机的飞速发展,手势估计技术正在逐渐从理论科学研究转向实际应用的技。他事物形成水乳交融的局面。样的信息交互方式逐渐应用到车辆控制系统中,其中以语音交互最为常见,而基。于手势估计的手势交互方式作为其他交互的补充也扮演着越来越重要的角色。人类的双眼、昆虫的复眼,通过不同角度摄像头同一时间、同一事物点的图像帧。原创 2024-03-03 00:30:00 · 705 阅读 · 0 评论 -
点云从入门到精通技术详解100篇-基于点云配准技术的 精确放疗定位(续)
结构信息,在网络的深层可以提取到语义等复杂的高层信息,但越复杂的特征越能体。即利用点对之间的相对位置关系构建点的局部邻域图,有效的利用了点云数据。的空间信息,添加注意力模块后动态更新点云的局部邻域图,提取信息量最大的点用。对平均误差值越小,说明旋转矩阵预测值误差越小;具有三维信息的人体点云数据,但由于相机的视野范围有限,无法一次性获取完整的。体点云体型进行改变,模拟出放疗后的患者人体点云,在此基础上,由于每次患者放。疗的位置都不尽相同,为模拟真实的放疗环境,本文将放疗前的患者人体点云进行一。原创 2024-03-02 00:30:00 · 123 阅读 · 0 评论 -
点云从入门到精通技术详解100篇-基于点云配准技术的 精确放疗定位
病情的进展,甚至达到治愈的目的,特别是对头颈部恶性肿瘤、食道癌、以及肺鳞癌、可以分为基于局部特征的点云配准、基于全局特征的点云配准和基于概率的点云配准。空间差异性,对点几何描述用直方图的方式进行表达,提升了配准的稳定性和鲁棒性。首先确定源点云与目标点云之间的最优匹配,再使用点与点之间的最优匹配进行配准,点云配准方式,其配准精度、配准效率、鲁棒性均有所提高,适用的场景也更为广泛,治疗对杀死癌细胞具有极好的作用,是癌症治疗的首选方法。从根本上杀死肿瘤细胞,但或多或少的会对周围的正常细胞造成无法补救的伤害,甚。原创 2024-03-01 00:30:00 · 171 阅读 · 0 评论 -
点云从入门到精通技术详解100篇-基于背包激光雷达点云在城市公园单木参数提取中的应用(续)
法需要预先计算所在点邻域内所有的点邻居,当选择的邻域点数过大时会需要大量的内存。提取前首先需要对该点云数据进行地面滤波滤除地面点,得到含有树木的地物点云数据。定性的对象来滤除图像中的最大目标区域,与腐蚀算法计算结果相反的是膨胀算法,通过。滤波运用到点云数据处理中主要是为了将地面点和其他点进行分类,在将该算法运用到点。有相同的重要性,主要体现在滤波结果的优劣上。因此,在点云滤波中如何选择合适的滤波窗口是地面点滤波结果。现出该物体轮廓的启发,若该布料具有较好的延展性则物体的轮廓会被描述的更加详细。原创 2024-02-27 00:30:00 · 627 阅读 · 0 评论 -
点云从入门到精通技术详解100篇-基于背包激光雷达点云在城市公园单木参数提取中的应用
定安卓智能手机为测量平台的便携、快捷的树高测量装备,并研制了相应的树高测量软件,基准站,针对精度要求较高的项目,需按照测绘规范架设三脚架,并将基站架在三脚架上。随着碳达峰、碳中和目标的提出,实现一个国家。排放总量,通过植树造林、节能减排等形式,抵消自身产生的二氧化碳排放,实现二氧化。碳的“零排放”,即二氧化碳的排放不再增长达到峰值,之后逐步回落。物量,因此,森林生物量的估算成为现代林业科研的热点问题,特别是大尺度区域森林生。术的发展和进步被引入中国,是近些年发展极为迅速的一种主动方式的遥感技术。原创 2024-02-26 00:30:00 · 492 阅读 · 0 评论 -
点云从入门到精通技术详解100篇-基于 5G 通讯的轨道移动激光雷达测量(续)
设定的停留时间结束后,激光雷达已结束扫描,轨道小车继续向前行进,实现即停即扫、的一种算法,其基本思想是通过迭代估计模型参数,从含有局外点数据中获得有效模型。是一体化的用户界面,其中包含了很多功能,诸如统一化的管理、安全保护、快捷使用。它的原理是在每个状态表进行检查和更新时,通过映射的方法,因此,在接收端需要对接收到的字节流进行缓存和解析,然后再将数据。单,因为它不需要进行连接操作,只需携带目的地址和端口即可,从而节省了大量的资。协同机制,其中包括了自主研发的轨道小车的控制平台以及激光雷达的二次开发操控,原创 2024-02-25 00:30:00 · 173 阅读 · 0 评论 -
点云从入门到精通技术详解100篇-基于 5G 通讯的轨道移动激光雷达测量
在这样的背景下,为了提高配准的精度和速度,轨道交通作为城市公共基础设施建设的重要组成部分,对优化城市空间布局,缓解城市。明确强调,要以最新技术与城轨交通深入融合作为核心,积极推动城轨信息化发展,加。动智慧型轨道交通建设,推动城市轨道交通智能化、高效化发展,以满足城市快速发展。推式的行进方式、线扫描的数据采集模式进行作业,装配有高昂的位姿定位模块,具有。描,点云拼接精度达毫米级,虽然工作时间相对连续移动式扫描时间长,但是精度普遍。小二乘法,重复执行“确认关系点集,并得到最优刚体变换”的具体步骤,直到满足收。原创 2024-02-22 00:30:00 · 417 阅读 · 0 评论 -
点云从入门到精通技术详解100篇-非结构化道路下无人平台路径规划与运动控制(下)
平台单轨动力学模型,将纵向车速固定为常速,只考虑横摆动力学和侧向动力学,相同的,即无人平台通过该栅格区域时坡度是暂时不变的,因此可以利用无人平。的统计特性的情况下,利用系统状态量的大量观测值,通过模型迭代获得状态量。值和当前时刻的测量值计算后验估计值并更新估计状态的后验误差协方差。于普通四轮车辆,为充分考虑模型约束,本文采用模型预测控制进行路径跟踪控。据当前的状态量观测值,在线预测有限时域内的状态量估计值,并迭代得到有限。步长的最优控制序列,并将得到的控制序列的第一个数值作用于被控模型对象,原创 2024-02-12 00:30:00 · 201 阅读 · 0 评论 -
点云从入门到精通技术详解100篇-非结构化道路下无人平台路径规划与运动控制(中)
系统确定起始点和目的点的全局位置,但此时栅格中未包含环境信息。息的环境地图模型,表达形式上是一个由若干个多元信息栅格组成的平面地图,二维的表现形式,但在栅格节点内存储了以高程值为数据基础的地形信息,有效。地表征了非结构化场景在三维空间下的原始信息,因此,本文实际上建立的是一。境中的全局规划,无人平台规划出一条连接起点与目标点的安全可行路径,不仅。法具有实时性差、计算量大、运算时间长的弊端,随着地图节点数量的增多,搜。情况,树发能够最大限度的利用前一次的搜索结果,快速地进行第二次规划。原创 2024-02-11 00:30:00 · 195 阅读 · 0 评论 -
点云从入门到精通技术详解100篇-非结构化道路下无人平台路径规划与运动控制
无人平台[1]根据行走机构的形式不同,可分为轮式无人平台、履带式式无人平台和足式无人平台。履带式无人平台越野能力强,在泥泞或松软路面上不易打滑、下陷,可以适应各种复杂地形,但受物理结构制约,其转向性能较差。足式无人平台行动灵活,可以行驶在窄小冗长的区域,能够跨越复杂障碍物,但因其足式结构与地面接触面积小,导致承载能力较差,质心较高导致越障时容易侧翻,并且对足式无人平台进行准确的多足运动协调控制一直是个巨大难题。相较上述两种无人平台,轮式无人平台结构简单,性能更为平均全面,且在行驶机动性和。原创 2024-02-10 00:30:00 · 254 阅读 · 0 评论 -
点云从入门到精通技术详解100篇-番茄采摘机械手的场景感知(续)
好地识别出特征,并且可以更准确地预测梯度的变化,而不会受到单个样本的影响。是精度较差,很难达毫米级,因其对时间测量设备要求高,不如结构光在近距离内的应用。宽比滑动口,确定候选区域。但是也存在一些缺点,比如学习时间较长,需要耗费大量的内存,从而增加了机器的计算。采摘机器手的学习速度,并且能够更好地模拟实际情况,有效地解决了优化过程中的学习。三个不同的部分组成,第一个和第二个组成了带有特定坐标的模型,第三个和第四个组成。是,由于边界框的尺寸可能会影响回归的准确性,因此,在计算坐标损失时,必须考虑边。原创 2024-02-09 00:30:00 · 138 阅读 · 0 评论 -
点云从入门到精通技术详解100篇-番茄采摘机械手的场景感知
随着农村人口城镇化的加速及人口出生率的降低,番茄采摘的劳动力存在明显不足。采摘成本高,机械化采摘技术的发展能够解决人力资源紧缺的问题,然而,目前大部分机。关键技术为番茄采摘机械手采摘的准确识别和定位。者采摘车在行进过程中,无法动态识别番茄所在位置,造成了采摘效率低、漏摘等现象。因此,在番茄采摘的场景感知系统中,对识别准确率的提高、识别算法的优化等,是有待。番茄,是茄科茄属的一年生草本植物,浆果扁球状或近球状,番茄外观呈红色或青红。番茄种植和采摘的数量庞大,对人力资源的需求非常高,而传统的人工采摘效率低,原创 2024-02-08 00:30:00 · 227 阅读 · 0 评论 -
点云从入门到精通技术详解100篇-堆叠零件的机器人三维视觉拾取(续)
和 armadil 数据集的 LCP 值分别取得最大值,分别为 0.115719、0.00657366、0.00658337。由图 3.12 可以得出:当 Times 分别取 3、3、4、5 时,bunny、dragon、happyBudhha。图 3.8(b)展示了该模型三维重建的点云模型,(c)、(d)、(f)分别展。和 0.0190231,即在相同条件下密度阈值分别在第 3、3、4、5 次的取值,会使得相应。综上所述,鉴于 SAC-IA 算法的通用性强,相较于 4PCS 和 NDT 算法更加简单、原创 2024-02-05 00:30:00 · 243 阅读 · 0 评论
分享