GBDT算法梳理

Gradient Boost

大致介绍

Gradient Boost是一种用于regression和classification的机器学习技术,如同其他Boost算法一样,它是通过将弱学习器(Decision Tree)集成起来的。
​
在Gradient Boost算法的第m轮(1<m<M),假设存在性能不佳的model $F_m$。Gradient Boost算法打算通过添加一个估计值h来构建一个新的模型$F_{m+1}$:$F_{m+1} = F_{m} + h(x)$。为了找到h,Gradient Boost算法假设有以下等式
因此,Gradient Boosting会让h来拟合残差$y-F_m(x)$.
​
正如在其它Boost算法里一样,$F_{m+1}(x)$是试图纠正前一model $F_m(x)$的errors。对于classification问题,将这一想法推广到除了square error function之外的loss function之中,可以推测残差值$y-F_m(x)$对于给定model即是square error loss function $\frac{1}{2}(y-F(x))^2$对$F(x)$的导数。故,Gradient Boosting算法可以视为Gradient Descent算法一种变形,并且为了泛化Gradient Boost将会需要”插入“不同的loss function和gradient。

算法流程

在许多监督学习问题中,都会有一个输出值y和一个输入向量x且其满足联合分布律$P(x,\ y)$. 使用对于已知变量x和对应变量y的训练集${\{(x_1,\ y_1 ), ...,(x_n,\ y_n)\}}$ ,目的是

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值