CART 分为回归树和决策树。这里重点讲讲回归树的特征选择。
回归树选择特征的方法是:平方误差最小化。
具体步骤为:
1)依次遍历每个特征j,以及该特征的每个取值s,计算每个切分点(j,s)的损失函数,选择损失函数最小的切分点。
其中c1,c2分别为R1,R2区间内的输出平均值。
2)使用上步得到的切分点将当前的输入空间划分为两个部分
3)然后将被划分后的两个部分再次计算切分点,依次类推,直到不能继续划分。
4)最后将输入空间划分为M个区域R1,R2,…,RM,生成的决策树为:
其中cm为所在区域的输出值的平均值