CART回归树和GBDT

本文介绍了CART回归树的选择特征方法,基于平方误差最小化的策略进行数据切分。接着详细阐述了GBDT(Gradient Boosting Decision Tree)的工作原理,包括回归树、梯度迭代和Shrinkage的概念,并通过实例解释了GBDT如何通过多棵树的迭代来逐步逼近真实值,降低过拟合风险。
摘要由CSDN通过智能技术生成

CART 分为回归树和决策树。这里重点讲讲回归树的特征选择。

回归树选择特征的方法是:平方误差最小化。

具体步骤为:

1)依次遍历每个特征j,以及该特征的每个取值s,计算每个切分点(j,s)的损失函数,选择损失函数最小的切分点。



其中c1,c2分别为R1,R2区间内的输出平均值。

2)使用上步得到的切分点将当前的输入空间划分为两个部分

3)然后将被划分后的两个部分再次计算切分点,依次类推,直到不能继续划分。

4)最后将输入空间划分为M个区域R1,R2,…,RM,生成的决策树为:


其中cm为所在区域的输出值的平均值

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值