CNN(卷积神经网络)的参数量计算和浮点计算量分析

本文详细探讨了卷积神经网络(CNN)和全连接层的参数数量及计算量。在CNN中,参数量由输入通道数(ci)、输出通道数(co)、卷积核宽度(kw)和高度(kh)决定,并在使用BatchNormalization时排除偏置项。计算量以FLOPs(乘法与加法操作)表示,全连接层的计算量则与输入和输出节点数直接相关。此外,文章还提及了全连接层的参数和计算量计算方式。
摘要由CSDN通过智能技术生成

1. CNN参数

params(w) = co* (ci * kw * kh)

params(b) = co

所以总的参数量为 params = co* (ci * kw * kh + 1)

当使用了BatchNormalization时,不需要bias

2. CNN计算量

FLOPs (乘法) =  co*  H * W * (ci * kw * kh)   其中H, W代表输出特征的宽和高

FLOPs (加法(w)) =  co*  H * W * (ci * kw * kh - 1)   其中H, W代表输出特征的宽和高

FLOPs (加法(b)) =  co*  H * W * (1)   其中H, W代表输出特征的宽和高

所以总的计算量 FLOPs  =  co*  H * W * (ci * kw * kh ) * 2 

3. 全连接层参数

全连接即普通的矩阵运算

对于(b,  m)的输入,如果要转化为(b, n)的输出

其kernel的维度为(m,n)bias的维度为(n,)

所以,params = (m + 1)* n

4. 全连接层计算量

每一个输出都需要经过m次乘法,(m-1)次加法 + 1次加法,共有n个输出

所以总的计算量 FLOPs  =  2 * m * n 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值