信号处理——时频分析
前言
自然界中几乎所有信号都是非平稳信号,比如我们的语音信号就是典型的非平稳信号。那么何谓平稳信号和非平稳信号呢?一个通俗的理解即,平稳信号在不同时间得到的采样值的统计特性(比如期望、方差等)是相同的,非平稳信号则与之相反,其特性会随时间变化。在信号处理中,这个特性通常指频率。
通常傅里叶变换只适合处理平稳信号,对于非平稳信号,由于频率特性会随时间变化,为了捕获这一时变特性,我们需要对信号进行时频分析,就包括短时傅里叶变换、小波变换、希尔伯特变换、希尔伯特黄变换这几种变换。以下逐一进行分析介绍。
一、傅里叶变换(Fourier Transform, FFT)
首先考虑一个连续信号 的傅里叶变换和它的反变换,如下:
在实际应用中,计算机只能处理离散信号,所以对连续信号x(t)进行时域采样,得到一组离散样本x(n),对它进行傅里叶变换得到:
上式即为离散时间傅里叶变换(DTFT),由于变换后得到的频域值仍然是连续的,我们继续对频域进行采样,得到: