在C++环境下利用Libtorch调用pytorch模型


前言

使用Libtorch在Windows环境下调用pytorch模型。


一、Libtorch下载

pytorch官网网址:https://pytorch.org/
Libtorch下载格式
下载完成之后,解压出来
Libtorch文件夹


二、配置Visual Studio环境

1.配置管理器

在这里插入图片描述

2.配置Release环境属性

VC++目录>>包含目录
VC++目录>>库目录
将Libtorch中的lib文件夹里面的所有.lib文件都加到附加依赖项中。之后再将这些.lib文件拷贝到C:\Windows\System32文件夹中。
链接器>>输入>>附加依赖项
C/C++ >> 常规
C/C++ >> 语言


三、生成pt模型

# pth转pt
import os
import torch
from PIL import Image
from torchvision import transforms
from model import AlexNet
def main():
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    print("using {} device.".format(device))
    # create model
    model = AlexNet(num_classes=5).to(device)
    img_path = r'D:\项目\人脸识别\deep-learning-for-image-processing-master\data_set\flower_data\rose.jpg'
    image = Image.open(img_path).convert('RGB')
    data_transform = transforms.Compose(
        [transforms.Resize((224, 224)),
         transforms.ToTensor(),
         transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
    img = data_transform(image)
    img = img.unsqueeze(dim=0)
    print(img.shape)
    # load model weights
    weights_path = "./AlexNet.pth"
    assert os.path.exists(weights_path), "file: '{}' dose not exist.".format(weights_path)
    testsize = 224

    if torch.cuda.is_available():
        modelState = torch.load
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值