1、定义并理解下列术语,说明它们之间的联系与区别:
(1)先说关系,关系可以理解为一张表。元组则是这张表(关系)中的一行;属性则是这张表中的一列。域是有相同数据类型值的集合,类似于表中某个属性的并集。笛卡尔积则是在域上的一种集合运算。
(2)若关系中的某一属性组的值能够唯一地标识一个元组,则称该属性组为候选码,从候选码中选定的一个码为主码;如果一个属性在表(关系)中既不是主码也不是候选码,但是他是另一个关系的主码那它就是外码。
(3)关系是一张表。关系模式是对这张表的属性或者其他之间联系的描述;关系数据库是若干张表的集合。
2、试述关系模型的完整性规则。在参照完整性中,什么情况下外码属性的值可以为空值?
实体完整性:所谓的实体完整性就是指关系(表)的主码不能取空值;比如学生表的主码通常是取学号为主码。
参照完整性:是指参照关系中每个元素的外码要么为空,要么等于被参照关系中某个元素的主码;比如新进大学的同学未分配专业,则其专业属性未空,而等到其分配专业的时候,其分配的专业是唯一的。
用户定义的完整性:指对关系中每个属性的取值作一个限制的具体定义。比如 性别属性只能取”男“或”女“ 。
需要注意的是,当前表中任何外码都不为其他关系的主码时可为空,若为其他关系的主码则一定不能为空。
3、
(1)
Π
S
N
O
(
σ
J
N
O
=
′
J
1
′
(
S
P
J
)
)
\Pi_{S N O}\left(\sigma_{J N O=^{\prime} J 1^{\prime}}(S P J)\right)
ΠSNO(σJNO=′J1′(SPJ))
(2)
Π
S
N
O
(
σ
J
N
O
=
′
J
1
′
∧
P
N
O
=
P
1
′
(
S
P
J
)
)
\Pi_{S N O}\left(\sigma_{J N O=^{\prime} J 1^{\prime} \wedge P N O=P 1^{\prime}}(S P J)\right)
ΠSNO(σJNO=′J1′∧PNO=P1′(SPJ))
(3)
Π
S
N
O
(
Π
S
N
O
,
P
N
O
(
σ
J
N
O
=
J
1
′
(
S
P
J
)
⋈
Π
P
N
O
(
σ
C
O
L
O
R
=
′
红
‾
′
(
P
)
)
)
\Pi_{S N O}\left(\Pi_{S N O, P N O}\left(\sigma_{J N O=J 1^{\prime}}(S P J) \bowtie \Pi_{P N O}\left(\sigma_{C O L O R=^{\prime} \underline{红}^{\prime}}(P)\right)\right)\right.
ΠSNO(ΠSNO,PNO(σJNO=J1′(SPJ)⋈ΠPNO(σCOLOR=′红′(P)))
(4)
Π
J
N
O
(
S
P
J
)
—
Π
J
N
O
(
σ
C
I
T
Y
=
′
天
津
′
∧
C
O
L
O
R
=
′
红
色
′
(
S
⋈
S
P
J
⋈
P
)
)
\Pi_{J N O}(S P J)—\Pi_{J N O}\left(\sigma_{C I T Y=^{\prime}天津^{\prime}\wedge C O L O R=^{\prime}红色^{\prime}} (S \bowtie S P J \bowtie P)\right)
ΠJNO(SPJ)—ΠJNO(σCITY=′天津′∧COLOR=′红色′(S⋈SPJ⋈P))
(5)
Π
J
N
O
,
P
N
O
(
S
P
J
)
÷
Π
P
N
O
(
σ
S
N
O
=
′
S
1
′
(
S
P
J
)
)
\Pi_{J N O, P N O}(S P J) \div \Pi_{P N O}\left(\sigma_{S N O=^{\prime} S 1^{\prime}}(S P J)\right)
ΠJNO,PNO(SPJ)÷ΠPNO(σSNO=′S1′(SPJ))4、关系代数的基本运算有哪些?如何用这些基本运算来表示其他运算?
并、差、笛卡尔积、投影和选择5种运算为基本的运算。其他3种运算,即交、连接和除,均可以用这5种基本运算来表达。
例如:
R
∩
S
=
R
−
(
R
−
S
)
R\cap S=R-(R-S)
R∩S=R−(R−S)
关系R(A,X),关系S(B,Y)
R
⋈
A
θ
B
S
=
σ
A
θ
B
(
R
×
S
)
\mathrm{R} \underset{A \theta B}{\bowtie}S=\sigma_{A \theta B}(R \times S)
RAθB⋈S=σAθB(R×S)
关系R(X,Y),关系S(Y,Z):
R
÷
S
=
Π
X
−
Π
X
(
Π
X
×
Π
Y
(
S
)
−
R
)
\mathrm{R} \div \mathrm{S}=\Pi_{X}-\Pi_{X}\left(\Pi_{X} \times \Pi_{Y}(S)-R\right)
R÷S=ΠX−ΠX(ΠX×ΠY(S)−R)
数据库第三次作业 ------范少帅
最新推荐文章于 2022-03-15 22:52:12 发布
本文深入探讨了关系数据库中的核心概念,包括关系、元组、属性、候选码、主码和外码等,并详细解析了关系模型的完整性规则,如实体完整性、参照完整性和用户定义的完整性。此外,还介绍了关系代数的基本运算及其应用。
摘要由CSDN通过智能技术生成