前言
这一篇完全是迫于鸭梨强行凑的一篇...
因为作者实在是太蒻了,看到AseanA大佬怒虐DP之后就产生了诸如“我也能A动态规划题”之类的妄想,于是莫名其妙地捡起一堆题就开始乱淦一波。
(然后理所当然地被虐成沙茶)
经典的背包问题
很显然有三种著名背包:01,完全与多重
当然多维费用也算
所以我直接甩一个链接应该比较好点击打开链接
我们当然会直接上习题辣
水得如尼亚加拉瀑布一样的水题
(1)暗黑游戏
二维费用,多重背包,拿来当模板真的很妙
甩一个题面点击打开链接
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<algorithm>
#include<cctype>
#include<iomanip>
using namespace std;
inline int read(){
int i=0,f=1;
char ch;
for(ch=getchar();!isdigit(ch);ch=getchar())
if(ch=='-') f=-1;
for(;isdigit(ch);ch=getchar())
i=(i<<3)+(i<<1)+(ch^48);
return i*f;
}
int buf[1024];
inline void write(int x){
if(!x){putchar('0');return ;}
if(x<0){putchar('-');x=-x;}
while(x){buf[++buf[0]]=x%10,x/=10;}
while(buf[0]) putchar(buf[buf[0]--]+48);
return ;
}
#define stan 222
int n,p,r,pn[stan],rn[stan],s[stan],t[stan],f[stan][stan];
signed main(){
n=read();p=read();r=read();
for(int i=1;i<=n;++i){
pn[i]=read();rn[i]=read();s[i]=read();t[i]=read();
}
for(int i=1;i<=n;++i)
if(s[i]==0)
for(int j=pn[i];j<=p;++j)
for(int k=rn[i];k<=r;++k)
f[j][k]=max(f[j][k],f[j-pn[i]][k-rn[i]]+t[i]);
else
for(int j=p;j>=pn[i];--j)
for(int k=r;k>=rn[i];--k)
for(int l=1;l*pn[i]<=j&&l*rn[i]<=k&&l<=s[i];++l)
f[j][k]=max(f[j][k],f[j-l*pn[i]][k-l*rn[i]]+l*t[i]);
write(f[p][r]);
return 0;
}
(2)质数和分解
甩一个链接点击打开链接
因为我们在讲背包,嗯,很显然,这就是一个背包
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<algorithm>
#include<cctype>
#include<iomanip>
using namespace std;
inline int read(){
int i=0,f=1;
char ch;
for(ch=getchar();!isdigit(ch);ch=getchar())
if(ch=='-') f=-1;
for(;isdigit(ch);ch=getchar())
i=(i<<3)+(i<<1)+(ch^48);
return i*f;
}
int buf[1024];
inline void write(int x){
if(!x){putchar('0');return ;}
if(x<0){putchar('-');x=-x;}
while(x){buf[++buf[0]]=x%10,x/=10;}
while(buf[0]) putchar(buf[buf[0]--]+48);
return ;
}
#define stan 222
int cnt,n,f[stan],pri[stan];
bool exi[stan];
void preact(){
for(int i=2;i<=200;++i){
if(!exi[i])
pri[++cnt]=i;
for(int j=1;j<=cnt&&i*pri[j]<=200;++j){
exi[i*pri[j]]=true;
if(i%pri[j]==0) break;
}
}
return ;
}
signed main(){
preact();
while(scanf("%d",&n)!=EOF){
memset(f,0,sizeof(f));
f[0]=1;
for(int i=1;i<=cnt;++i)
for(int j=pri[i];j<=n;++j)
f[j]+=f[j-pri[i]];
write(f[n]);puts("");
}
return 0;
}
(3)墨墨的等式
题面照例见链接
很显然我们可以知道对于一个重量为ai的包,Xi表示的是这个背包被选择的次数
这就是一个无限背包求可行方案数问题了
同时考虑到对于一个权值bi为最小满足ai*bi+x是可行解(x为给定权值),那么自然ai*(bi+1)+x均可凑
然后转化成最短路即可
参考文献点击打开链接
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<algorithm>
#include<cctype>
#include<iomanip>
#include<queue>
#define int long long
using namespace std;
inline int read(){
int i=0,f=1;
char ch;
for(ch=getchar();!isdigit(ch);ch=getchar())
if(ch=='-') f=-1;
for(;isdigit(ch);ch=getchar())
i=(i<<3)+(i<<1)+(ch^48);
return i*f;
}
int buf[1024];
inline void write(int x){
if(!x){putchar('0');return ;}
if(x<0){putchar('-');x=-x;}
while(x){buf[++buf[0]]=x%10,x/=10;}
while(buf[0]) putchar(buf[buf[0]--]+48);
return ;
}
#define stan 555555
#define sten 5555555
#define stin 22
priority_queue<pair<int,int> >que;
int tot,first[stan],goal[sten],nxt[sten],dis[sten],to[stan],vis[stan],n,l,r,a[stin],cnt1,cnt2,ans;
void addedge(int a,int b,int c){
nxt[++tot]=first[a];first[a]=tot;goal[tot]=b;dis[tot]=c;
return ;
}
void dijkstra(){
for(int i=0;i<a[1];++i)
to[i]=999999999999999;
to[0]=0;
que.push(make_pair(-to[0],0));
while(!que.empty()){
int u=que.top().second;que.pop();
if(vis[u]) continue;
vis[u]=true;
for(int p=first[u];p;p=nxt[p])
if(to[goal[p]]>to[u]+dis[p]){
to[goal[p]]=to[u]+dis[p];
que.push(make_pair(-to[goal[p]],goal[p]));
}
}
return ;
}
signed main(){
n=read();l=read();r=read();
for(int i=1;i<=n;++i)
a[i]=read();
sort(a+1,a+n+1);
for(int i=0;i<a[1];++i)
for(int j=2;j<=n;++j)
addedge(i,(a[j]+i)%a[1],a[j]);
dijkstra();
for(int i=0;i<a[1];++i)
if(to[i]<=r){
cnt1=max((int)0,(l-to[i])/a[1]);
if(cnt1*a[1]+to[i]<l) ++cnt1;
cnt2=(r-to[i])/a[1];
if(cnt2*a[1]+to[i]>r) --cnt2;
ans+=cnt2-cnt1+1;
}
write(ans);
return 0;
}
树形DP
那啥我觉得树形DP还是比线性DP好理解得多
水得如下开水一样的水题
所以我们还是直接上题比较妙
(1)骑士(ZJOI2008)
总觉得这是一道环状DP,找到环之后两个人分别怼一遍即可
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<algorithm>
#include<cctype>
#include<iomanip>
#define int long long
using namespace std;
inline int read(){
int i=0,f=1;
char ch;
for(ch=getchar();!isdigit(ch);ch=getchar())
if(ch=='-') f=-1;
for(;isdigit(ch);ch=getchar())
i=(i<<3)+(i<<1)+(ch^48);
return i*f;
}
int buf[1024];
inline void write(int x){
if(!x){putchar('0');return ;}
if(x<0){putchar('-');x=-x;}
while(x){buf[++buf[0]]=x%10,x/=10;}
while(buf[0]) putchar(buf[buf[0]--]+48);
return ;
}
#define stan 1111111
int tot,nxt[stan],first[stan],goal[stan],fa[stan],val[stan],f[stan][2],tag[stan];
int ans,n,b;
bool vis[stan];
void addedge(int a,int b){
nxt[++tot]=first[a];first[a]=tot;goal[tot]=b;
fa[b]=a;
return ;
}
void dfs(int u){
vis[u]=true;
f[u][1]=val[u];
for(int p=first[u];p;p=nxt[p])
if(!vis[goal[p]]){
dfs(goal[p]);
f[u][0]+=max(f[goal[p]][0],f[goal[p]][1]);
f[u][1]+=f[goal[p]][0];
}
return ;
}
void dp(int pos){
int root;
for(root=pos;tag[root]!=pos;root=fa[root])
tag[root]=pos;
dfs(root);
int nx=fa[root];
f[nx][1]=f[nx][0];
for(nx=fa[nx];nx!=root;nx=fa[nx]){
f[nx][1]=val[nx];f[nx][0]=0;
for(int p=first[nx];p;p=nxt[p]){
f[nx][0]+=max(f[goal[p]][1],f[goal[p]][0]);
f[nx][1]+=f[goal[p]][0];
}
}
f[root][1]=val[root];
for(int p=first[root];p;p=nxt[p])
f[root][1]+=f[goal[p]][0];
ans+=max(f[root][0],f[root][1]);
return ;
}
signed main(){
n=read();
for(int i=1;i<=n;++i){
val[i]=read();
b=read();
addedge(b,i);
}
for(int i=1;i<=n;++i)
if(!vis[i]) dp(i);
write(ans);
return 0;
}
(2)仙人掌图(SHOI2008)
“这世间所有的相遇,都是久别重逢”——宫二
通过这道题我们可以发现,原来世间所有省选的树形DP,都是带了环的
甩一个大佬的链接outro
讲个笑话,我原封不动地照抄了大佬的代码
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<algorithm>
#include<cctype>
#include<iomanip>
using namespace std;
inline int read(){
int i=0,f=1;
char ch;
for(ch=getchar();!isdigit(ch);ch=getchar())
if(ch=='-') f=-1;
for(;isdigit(ch);ch=getchar())
i=(i<<3)+(i<<1)+(ch^48);
return i*f;
}
int buf[1024];
inline void write(int x){
if(!x){putchar('0');return ;}
if(x<0){putchar('-');x=-x;}
while(x){buf[++buf[0]]=x%10,x/=10;}
while(buf[0]) putchar(buf[buf[0]--]+48);
return ;
}
#define stan 55555
#define sten 2222222
int n,m,tot,k,a,b;
int nxt[sten],first[stan],goal[sten],copf[stan<<1],f[stan];
int low[stan],dfn[stan],ts,l,r,ans,dep[stan];
int fa[stan],q[stan<<1];
void addedge(int a,int b){
nxt[++tot]=first[a];first[a]=tot;goal[tot]=b;
nxt[++tot]=first[b];first[b]=tot;goal[tot]=a;
return ;
}
void dp(int root,int x){
int tota=dep[x]-dep[root]+1;
for(int u=x;u!=root;u=fa[u])
copf[tota--]=f[u];
copf[tota]=f[root];
tota=dep[x]-dep[root]+1;
for(int i=1;i<=tota;++i)
copf[i+tota]=copf[i];
q[1]=1;l=r=1;
for(int i=2;i<=2*tota;++i){
while(l<=r&&i-q[l]>tota/2) ++l;
ans=max(ans,copf[i]+i+copf[q[l]]-q[l]);
while(l<=r&&copf[q[r]]-q[r]<=copf[i]-i) --r;
q[++r]=i;
}
for(int i=2;i<=tota;++i)
f[root]=max(f[root],copf[i]+min(i-1,tota-i+1));
return ;
}
void tarjan(int u){
low[u]=dfn[u]=++ts;
for(int p=first[u];p;p=nxt[p])
if(goal[p]!=fa[u]){
if(!dfn[goal[p]]){
fa[goal[p]]=u;
dep[goal[p]]=dep[u]+1;
tarjan(goal[p]);
low[u]=min(low[u],low[goal[p]]);
}
else
low[u]=min(low[u],dfn[goal[p]]);
if(dfn[u]<low[goal[p]]){
ans=max(ans,f[u]+f[goal[p]]+1);
f[u]=max(f[u],f[goal[p]]+1);
}
}
for(int p=first[u];p;p=nxt[p])
if(fa[goal[p]]!=u&&dfn[u]<dfn[goal[p]])
dp(u,goal[p]);
return ;
}
signed main(){
n=read();m=read();
for(int i=1;i<=m;++i){
k=read();a=read();
for(int j=2;j<=k;++j){
b=read();
addedge(a,b);
a=b;
}
}
tarjan(1);
write(ans);
return 0;
}
(3)河流
对这道题的存在就是打我脸的
题解我已经懒到不想写了。
我绝对不知道这是一个记忆化外带多叉转二叉
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<algorithm>
#include<cctype>
#include<iomanip>
using namespace std;
inline int read(){
int i=0,f=1;
char ch;
for(ch=getchar();!isdigit(ch);ch=getchar())
if(ch=='-') f=-1;
for(;isdigit(ch);ch=getchar())
i=(i<<3)+(i<<1)+(ch^48);
return i*f;
}
int w[200],v[200],d[200],n,k,f[200][100][200],lc[200],rc[200],son[200];
void dfs(int pos){
for(int u=lc[pos];u;u=rc[u]){
d[u]+=d[pos];
dfs(u);
}
return;
}
int work(int pos,int remain,int root){
int temp=0;
if(f[pos][remain][root]!=-1) return f[pos][remain][root];
f[pos][remain][root]=999999999;
for(int k=0;k<=remain;++k){
temp=w[pos]*(d[pos]-d[root]);
if(lc[pos]) temp+=work(lc[pos],k,root);
if(rc[pos]) temp+=work(rc[pos],remain-k,root);
f[pos][remain][root]=min(f[pos][remain][root],temp);
if(k<remain){
temp=0;
if(lc[pos]) temp+=work(lc[pos],k,pos);
if(rc[pos]) temp+=work(rc[pos],remain-k-1,root);
f[pos][remain][root]=min(f[pos][remain][root],temp);
}
}
return f[pos][remain][root];
}
signed main(){
n=read();k=read();
for(int i=1;i<=n;++i){
w[i]=read();
v[i]=read();
d[i]=read();
if(!son[v[i]]) lc[v[i]]=i;
else rc[son[v[i]]]=i;
son[v[i]]=i;
}
memset(f,255,sizeof(f));
dfs(0);
cout<<work(0,k,0);
return 0;
}
局部完结撒花