简单动态规划(1)——从入门到放弃

本文介绍了动态规划的基础知识,从经典的01背包、完全背包、多重背包问题入手,并通过实例详细解析了二维费用的多重背包问题。接着,文章探讨了树形DP,包括骑士问题和仙人掌图问题,通过具体题目帮助读者理解树形DP的解题思路。
摘要由CSDN通过智能技术生成

前言

这一篇完全是迫于鸭梨强行凑的一篇...

因为作者实在是太蒻了,看到AseanA大佬怒虐DP之后就产生了诸如“我也能A动态规划题”之类的妄想,于是莫名其妙地捡起一堆题就开始乱淦一波。

(然后理所当然地被虐成沙茶)

经典的背包问题

很显然有三种著名背包:01,完全与多重

当然多维费用也算

所以我直接甩一个链接应该比较好点击打开链接

我们当然会直接上习题辣

水得如尼亚加拉瀑布一样的水题

(1)暗黑游戏

二维费用,多重背包,拿来当模板真的很妙

甩一个题面点击打开链接

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<algorithm>
#include<cctype>
#include<iomanip>
using namespace std;
inline int read(){
	int i=0,f=1;
	char ch;
	for(ch=getchar();!isdigit(ch);ch=getchar())
		if(ch=='-') f=-1;
	for(;isdigit(ch);ch=getchar())
		i=(i<<3)+(i<<1)+(ch^48);
	return i*f;
}
int buf[1024];
inline void write(int x){
	if(!x){putchar('0');return ;}
	if(x<0){putchar('-');x=-x;}
	while(x){buf[++buf[0]]=x%10,x/=10;}
	while(buf[0]) putchar(buf[buf[0]--]+48);
	return ;
}
#define stan 222
int n,p,r,pn[stan],rn[stan],s[stan],t[stan],f[stan][stan];
signed main(){
	n=read();p=read();r=read();
	for(int i=1;i<=n;++i){
		pn[i]=read();rn[i]=read();s[i]=read();t[i]=read();
	}
	for(int i=1;i<=n;++i)
		if(s[i]==0)
			for(int j=pn[i];j<=p;++j)
				for(int k=rn[i];k<=r;++k)
					f[j][k]=max(f[j][k],f[j-pn[i]][k-rn[i]]+t[i]);
		else
			for(int j=p;j>=pn[i];--j)
				for(int k=r;k>=rn[i];--k)
					for(int l=1;l*pn[i]<=j&&l*rn[i]<=k&&l<=s[i];++l)
						f[j][k]=max(f[j][k],f[j-l*pn[i]][k-l*rn[i]]+l*t[i]);
	write(f[p][r]);
	return 0;
}


(2)质数和分解

甩一个链接点击打开链接

因为我们在讲背包,嗯,很显然,这就是一个背包

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<algorithm>
#include<cctype>
#include<iomanip>
using namespace std;
inline int read(){
	int i=0,f=1;
	char ch;
	for(ch=getchar();!isdigit(ch);ch=getchar())
		if(ch=='-') f=-1;
	for(;isdigit(ch);ch=getchar())
		i=(i<<3)+(i<<1)+(ch^48);
	return i*f;
}
int buf[1024];
inline void write(int x){
	if(!x){putchar('0');return ;}
	if(x<0){putchar('-');x=-x;}
	while(x){buf[++buf[0]]=x%10,x/=10;}
	while(buf[0]) putchar(buf[buf[0]--]+48);
	return ;
}
#define stan 222
int cnt,n,f[stan],pri[stan];
bool exi[stan];
void preact(){
	for(int i=2;i<=200;++i){
		if(!exi[i])
			pri[++cnt]=i;
		for(int j=1;j<=cnt&&i*pri[j]<=200;++j){
			exi[i*pri[j]]=true;
			if(i%pri[j]==0) break;
		}
	}
	return ;
}
signed main(){
	preact();
	while(scanf("%d",&n)!=EOF){
		memset(f,0,sizeof(f));
		f[0]=1;
		for(int i=1;i<=cnt;++i)
			for(int j=pri[i];j<=n;++j)
				f[j]+=f[j-pri[i]];
		write(f[n]);puts("");
	}
	return 0;
}


(3)墨墨的等式

题面照例见链接

很显然我们可以知道对于一个重量为ai的包,Xi表示的是这个背包被选择的次数

这就是一个无限背包求可行方案数问题了

同时考虑到对于一个权值bi为最小满足ai*bi+x是可行解(x为给定权值),那么自然ai*(bi+1)+x均可凑

然后转化成最短路即可

参考文献点击打开链接

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<algorithm>
#include<cctype>
#include<iomanip>
#include<queue>
#define int long long
using namespace std;
inline int read(){
	int i=0,f=1;
	char ch;
	for(ch=getchar();!isdigit(ch);ch=getchar())
		if(ch=='-') f=-1;
	for(;isdigit(ch);ch=getchar())
		i=(i<<3)+(i<<1)+(ch^48);
	return i*f;
}
int buf[1024];
inline void write(int x){
	if(!x){putchar('0');return ;}
	if(x<0){putchar('-');x=-x;}
	while(x){buf[++buf[0]]=x%10,x/=10;}
	while(buf[0]) putchar(buf[buf[0]--]+48);
	return ;
}
#define stan 555555
#define sten 5555555
#define stin 22
priority_queue<pair<int,int> >que;
int tot,first[stan],goal[sten],nxt[sten],dis[sten],to[stan],vis[stan],n,l,r,a[stin],cnt1,cnt2,ans;
void addedge(int a,int b,int c){
	nxt[++tot]=first[a];first[a]=tot;goal[tot]=b;dis[tot]=c;
	return ;
}
void dijkstra(){
	for(int i=0;i<a[1];++i)
		to[i]=999999999999999;
	to[0]=0;
	que.push(make_pair(-to[0],0));
	while(!que.empty()){
		int u=que.top().second;que.pop();
		if(vis[u]) continue;
		vis[u]=true;
		for(int p=first[u];p;p=nxt[p])
			if(to[goal[p]]>to[u]+dis[p]){
				to[goal[p]]=to[u]+dis[p];
				que.push(make_pair(-to[goal[p]],goal[p]));
			}
	}
	return ;
}
signed main(){
	n=read();l=read();r=read();
	for(int i=1;i<=n;++i)
		a[i]=read();
	sort(a+1,a+n+1);
	for(int i=0;i<a[1];++i)
		for(int j=2;j<=n;++j)
			addedge(i,(a[j]+i)%a[1],a[j]);
	dijkstra();
	for(int i=0;i<a[1];++i)
		if(to[i]<=r){
			cnt1=max((int)0,(l-to[i])/a[1]);
			if(cnt1*a[1]+to[i]<l) ++cnt1;
			cnt2=(r-to[i])/a[1];
			if(cnt2*a[1]+to[i]>r) --cnt2;
			ans+=cnt2-cnt1+1;
		}
	write(ans);
	return 0;
}

树形DP

那啥我觉得树形DP还是比线性DP好理解得多

水得如下开水一样的水题

所以我们还是直接上题比较妙

(1)骑士(ZJOI2008)

传送门

总觉得这是一道环状DP,找到环之后两个人分别怼一遍即可

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<algorithm>
#include<cctype>
#include<iomanip>
#define int long long
using namespace std;
inline int read(){
	int i=0,f=1;
	char ch;
	for(ch=getchar();!isdigit(ch);ch=getchar())
		if(ch=='-') f=-1;
	for(;isdigit(ch);ch=getchar())
		i=(i<<3)+(i<<1)+(ch^48);
	return i*f;
}
int buf[1024];
inline void write(int x){
	if(!x){putchar('0');return ;}
	if(x<0){putchar('-');x=-x;}
	while(x){buf[++buf[0]]=x%10,x/=10;}
	while(buf[0]) putchar(buf[buf[0]--]+48);
	return ;
}
#define stan 1111111
int tot,nxt[stan],first[stan],goal[stan],fa[stan],val[stan],f[stan][2],tag[stan];
int ans,n,b;
bool vis[stan]; 
void addedge(int a,int b){
	nxt[++tot]=first[a];first[a]=tot;goal[tot]=b;
	fa[b]=a;
	return ;
}
void dfs(int u){
	vis[u]=true;
	f[u][1]=val[u];
	for(int p=first[u];p;p=nxt[p])
		if(!vis[goal[p]]){
			dfs(goal[p]);
			f[u][0]+=max(f[goal[p]][0],f[goal[p]][1]);
			f[u][1]+=f[goal[p]][0];
		}
	return ;
}
void dp(int pos){
	int root;
	for(root=pos;tag[root]!=pos;root=fa[root])
		tag[root]=pos;
	dfs(root);
	int nx=fa[root];
	f[nx][1]=f[nx][0];
	for(nx=fa[nx];nx!=root;nx=fa[nx]){
		f[nx][1]=val[nx];f[nx][0]=0;
		for(int p=first[nx];p;p=nxt[p]){
			f[nx][0]+=max(f[goal[p]][1],f[goal[p]][0]);
			f[nx][1]+=f[goal[p]][0];
		}
	}
	f[root][1]=val[root];
	for(int p=first[root];p;p=nxt[p])
		f[root][1]+=f[goal[p]][0];
	ans+=max(f[root][0],f[root][1]);
	return ;
}
signed main(){
	n=read();
	for(int i=1;i<=n;++i){
		val[i]=read();
		b=read();
		addedge(b,i);
	}
	for(int i=1;i<=n;++i)
		if(!vis[i]) dp(i);
	write(ans);
	return 0;
}

(2)仙人掌图(SHOI2008)

“这世间所有的相遇,都是久别重逢”——宫二

Intro

通过这道题我们可以发现,原来世间所有省选的树形DP,都是带了环的

甩一个大佬的链接outro

讲个笑话,我原封不动地照抄了大佬的代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<algorithm>
#include<cctype>
#include<iomanip>
using namespace std;
inline int read(){
	int i=0,f=1;
	char ch;
	for(ch=getchar();!isdigit(ch);ch=getchar())
		if(ch=='-') f=-1;
	for(;isdigit(ch);ch=getchar())
		i=(i<<3)+(i<<1)+(ch^48);
	return i*f;
}
int buf[1024];
inline void write(int x){
	if(!x){putchar('0');return ;}
	if(x<0){putchar('-');x=-x;}
	while(x){buf[++buf[0]]=x%10,x/=10;}
	while(buf[0]) putchar(buf[buf[0]--]+48);
	return ;
}
#define stan 55555
#define sten 2222222
int n,m,tot,k,a,b;
int nxt[sten],first[stan],goal[sten],copf[stan<<1],f[stan];
int low[stan],dfn[stan],ts,l,r,ans,dep[stan];
int fa[stan],q[stan<<1];
void addedge(int a,int b){
	nxt[++tot]=first[a];first[a]=tot;goal[tot]=b;
	nxt[++tot]=first[b];first[b]=tot;goal[tot]=a;
	return ;
}
void dp(int root,int x){
	int tota=dep[x]-dep[root]+1;
	for(int u=x;u!=root;u=fa[u])
		copf[tota--]=f[u];
	copf[tota]=f[root];
	tota=dep[x]-dep[root]+1;
	for(int i=1;i<=tota;++i)
		copf[i+tota]=copf[i];
	q[1]=1;l=r=1;
	for(int i=2;i<=2*tota;++i){
		while(l<=r&&i-q[l]>tota/2) ++l;
		ans=max(ans,copf[i]+i+copf[q[l]]-q[l]);
		while(l<=r&&copf[q[r]]-q[r]<=copf[i]-i) --r;
		q[++r]=i;
	}
	for(int i=2;i<=tota;++i)
		f[root]=max(f[root],copf[i]+min(i-1,tota-i+1));
	return ;
}
void tarjan(int u){
	low[u]=dfn[u]=++ts;
	for(int p=first[u];p;p=nxt[p])
		if(goal[p]!=fa[u]){
			if(!dfn[goal[p]]){
				fa[goal[p]]=u;
				dep[goal[p]]=dep[u]+1;
				tarjan(goal[p]);
				low[u]=min(low[u],low[goal[p]]);
			}
			else 
				low[u]=min(low[u],dfn[goal[p]]);
			if(dfn[u]<low[goal[p]]){
				ans=max(ans,f[u]+f[goal[p]]+1);
				f[u]=max(f[u],f[goal[p]]+1);
			}
		}
	for(int p=first[u];p;p=nxt[p])
		if(fa[goal[p]]!=u&&dfn[u]<dfn[goal[p]])
			dp(u,goal[p]);
	return ;
}
signed main(){
	n=read();m=read();
	for(int i=1;i<=m;++i){
		k=read();a=read();
		for(int j=2;j<=k;++j){
			b=read();
			addedge(a,b);
			a=b;
		}
	}
	tarjan(1);
	write(ans);
	return 0;
}

(3)河流

对这道题的存在就是打我脸的

题解我已经懒到不想写了。

我绝对不知道这是一个记忆化外带多叉转二叉

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<algorithm>
#include<cctype>
#include<iomanip>
using namespace std;
inline int read(){
	int i=0,f=1;
	char ch;
	for(ch=getchar();!isdigit(ch);ch=getchar())
		if(ch=='-') f=-1;
	for(;isdigit(ch);ch=getchar())
		i=(i<<3)+(i<<1)+(ch^48);
	return i*f;
}
int w[200],v[200],d[200],n,k,f[200][100][200],lc[200],rc[200],son[200];
void dfs(int pos){
	for(int u=lc[pos];u;u=rc[u]){
		d[u]+=d[pos];
		dfs(u);
	}
	return;
}
int work(int pos,int remain,int root){
	int temp=0;
	if(f[pos][remain][root]!=-1) return f[pos][remain][root];
	f[pos][remain][root]=999999999;
	for(int k=0;k<=remain;++k){
		temp=w[pos]*(d[pos]-d[root]);
		if(lc[pos]) temp+=work(lc[pos],k,root);
		if(rc[pos]) temp+=work(rc[pos],remain-k,root);
		f[pos][remain][root]=min(f[pos][remain][root],temp);
		if(k<remain){
			temp=0;
			if(lc[pos]) temp+=work(lc[pos],k,pos);
			if(rc[pos]) temp+=work(rc[pos],remain-k-1,root);
			f[pos][remain][root]=min(f[pos][remain][root],temp);
		}
	}
	return f[pos][remain][root];
}
signed main(){
	n=read();k=read();
	for(int i=1;i<=n;++i){
		w[i]=read();
		v[i]=read();
		d[i]=read();
		if(!son[v[i]]) lc[v[i]]=i;
		else rc[son[v[i]]]=i;
		son[v[i]]=i;
	}
	memset(f,255,sizeof(f));
	dfs(0);
	cout<<work(0,k,0);
	return 0;
}


局部完结撒花



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值