python scikit-image库 HOG提取特征(参数解释)

函数定义:

hog(image, orientations=9, pixels_per_cell=(8, 8), cells_per_block=(3, 3),
    block_norm='L2-Hys', visualize=False, transform_sqrt=False,
    feature_vector=True, multichannel=None, *, channel_axis=None)

参数解释:

通过以下方式计算定向梯度 (HOG) 的直方图
1.(可选)全局图像归一化
2. 计算rowcol中的梯度图像
3. 计算梯度直方图
4. 跨块标准化
5. 展平成特征向量

image:(M,N [,C]) ndarray 输入图像(灰度)。
orientations:int,可选方向箱的数量。
pixels_per_cell:2元组(int,int),可选的单元格大小(以像素为单位)。
cells_per_block:2元组(int,int),可选每个块中的单元格数。
block_norm:str {‘L1’,‘L1-sqrt’,‘L2’,‘L2-Hys’},可选
  块归一化方法:
  L1:使用 L1 范数进行归一化。
  L1-sqrt:使用 L1 范数进行归一化,然后是平方根。
  L2:使用 L2 范数进行归一化。
  L2-Hys:使用 L2 范数进行归一化,然后限制最大值为 0.2(Hys 代表滞后)和使用 L2 范数进行重整化。 (默认)
visualize:bool,可选
  同时返回 HOG 的图像。对于每个单元格和方向箱,图像包含以单元格中心为中心的线段,垂直于所跨越的角度范围的中点方向箱,并具有与相应的强度成比例的直方图值。
transform_sqrt :bool,可选
  应用幂律压缩来规范化图像之前加工。如果图像包含负片,请勿使用此选项价值观。另请参阅下面的“注释”部分。
feature_vector:bool,可选
  通过对结果调用 .ravel() 将数据作为特征向量返回就在返回之前。
multichannel:bool,可选
  如果为 True,则最后一个“图像”维度被视为颜色通道,
  否则作为空间。此参数已弃用:指定channel_axis 代替。
channel_axis :int或None,可选
  如果为 None,则假定图像是灰度(单通道)图像。
  否则,该参数表示数组的哪个轴对应到频道。

skimage库中函数定义

	Extract Histogram of Oriented Gradients (HOG) for a given image.

    Compute a Histogram of Oriented Gradients (HOG) by

        1. (optional) global image normalization
        2. computing the gradient image in `row` and `col`
        3. computing gradient histograms
        4. normalizing across blocks
        5. flattening into a feature vector

    Parameters
    ----------
    image : (M, N[, C]) ndarray
        Input image.
    orientations : int, optional
        Number of orientation bins.
    pixels_per_cell : 2-tuple (int, int), optional
        Size (in pixels) of a cell.
    cells_per_block : 2-tuple (int, int), optional
        Number of cells in each block.
    block_norm : str {'L1', 'L1-sqrt', 'L2', 'L2-Hys'}, optional
        Block normalization method:

        ``L1``
           Normalization using L1-norm.
        ``L1-sqrt``
           Normalization using L1-norm, followed by square root.
        ``L2``
           Normalization using L2-norm.
        ``L2-Hys``
           Normalization using L2-norm, followed by limiting the
           maximum values to 0.2 (`Hys` stands for `hysteresis`) and
           renormalization using L2-norm. (default)
           For details, see [3]_, [4]_.

    visualize : bool, optional
        Also return an image of the HOG.  For each cell and orientation bin,
        the image contains a line segment that is centered at the cell center,
        is perpendicular to the midpoint of the range of angles spanned by the
        orientation bin, and has intensity proportional to the corresponding
        histogram value.
    transform_sqrt : bool, optional
        Apply power law compression to normalize the image before
        processing. DO NOT use this if the image contains negative
        values. Also see `notes` section below.
    feature_vector : bool, optional
        Return the data as a feature vector by calling .ravel() on the result
        just before returning.
    multichannel : boolean, optional
        If True, the last `image` dimension is considered as a color channel,
        otherwise as spatial. This argument is deprecated: specify
        `channel_axis` instead.
    channel_axis : int or None, optional
        If None, the image is assumed to be a grayscale (single channel) image.
        Otherwise, this parameter indicates which axis of the array corresponds
        to channels.

        .. versionadded:: 0.19
           `channel_axis` was added in 0.19.

    Returns
    -------
    out : (n_blocks_row, n_blocks_col, n_cells_row, n_cells_col, n_orient) ndarray
        HOG descriptor for the image. If `feature_vector` is True, a 1D
        (flattened) array is returned.
    hog_image : (M, N) ndarray, optional
        A visualisation of the HOG image. Only provided if `visualize` is True.
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

friedrichor

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值