- 博客(4)
- 资源 (1)
- 收藏
- 关注
原创 朴素贝叶斯法--机器学习(3)
1.导读朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法;之所以为朴素,就是假设特征条件独立,使得计算简单;如果没有假设特征条件独立,则应该考虑各特征条件之间的关系,从而形成贝叶斯网络;本次博客主要从基础公式,朴素贝叶斯法的学习与分类、参数估计、高斯朴素贝叶斯等方面介绍朴素贝叶斯法。2.原始数学公式无论是在高中数学还是概率论中,我们都会学到条件概率公式,条件概率公式如下:. P(A∣B)=P(AB)P(B)\ P(A|B)= \cfrac {P(AB)}{P(B)} P(
2020-06-17 21:34:03 274
原创 KNN与KDTree--机器学习(2)
1.导读k近邻法(k-nearnest neighborm,k-NN)是一种基本分类与回归方法。从这个方法的名字上来看基本上就可以知道这个方法是怎么做的了——不需要训练模型,假定已有数据及其标签(自己输入),然后再输入一个未知的目标值,计算一下和这个目标值最近的“K”个数据分别是哪个,然后统计这k个数据的标签,看看哪类最多就以此预测我们的目标值的标签,用术语来说这个叫做“多数表决规则”,这跟操作系统中取内存时的“局部性原理”有点相似,用古语来说就是:物以类聚,人以群分。这个算法就是这么一个道理了。这次的博
2020-06-03 15:29:13 406
原创 感知机--机器学习(1)
1.导读近日在备战保研和考研之余,想着重温一下李航的《统计学习方法》以及一些常见的入门模型,便当做写一下笔记当做分享。希望对这方面有兴趣的同学可以对此有所了解和学习,欢迎一起交流。为了简洁易懂,我将从概念、模型的提出、学习的算法、以及感知机的对偶形式几个方面配合着代码来进行分享。2.感知机概念感知机(perceptron)是二类分类的线性分类模型,其输入为实例的特征向量,输出为实例的类别,取+1和-1二值。感知机对应于输入空间(特征空间)中将实例划分为正负两类的分离超平面,属于判别模型。感知机的学习旨
2020-06-01 16:17:11 731 1
原创 Pytorch实现RNN进行文本(情感)分类
导读本菜鸟在学习NLP过程中,入门任务中有这么一个任务:用RNN实现文本分类有如下几个知识点:1.CNN/RNN2.pytorch3.词嵌入4.Dropout在这里我就不细说RNN了,毕竟我也不是很熟悉啊哈哈哈,给出一个讲的比较好的博文链接:RNN认识,RNN如何训练的1.数据集及处理这里使用的数据集是:Classify the sentiment of sentences f...
2020-02-12 22:54:22 7919 4
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人