机器学习
Frierice
硕士在读,对数据库、数据分析、NLP、DL方面有兴趣,欢迎交流学习
展开
-
朴素贝叶斯法--机器学习(3)
1.导读 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法;之所以为朴素,就是假设特征条件独立,使得计算简单;如果没有假设特征条件独立,则应该考虑各特征条件之间的关系,从而形成贝叶斯网络;本次博客主要从基础公式,朴素贝叶斯法的学习与分类、参数估计、高斯朴素贝叶斯等方面介绍朴素贝叶斯法。 2.原始数学公式 无论是在高中数学还是概率论中,我们都会学到条件概率公式,条件概率公式如下: . P(A∣B)=P(AB)P(B)\ P(A|B)= \cfrac {P(AB)}{P(B)} P(原创 2020-06-17 21:34:03 · 273 阅读 · 0 评论 -
KNN与KDTree--机器学习(2)
1.导读 k近邻法(k-nearnest neighborm,k-NN)是一种基本分类与回归方法。从这个方法的名字上来看基本上就可以知道这个方法是怎么做的了——不需要训练模型,假定已有数据及其标签(自己输入),然后再输入一个未知的目标值,计算一下和这个目标值最近的“K”个数据分别是哪个,然后统计这k个数据的标签,看看哪类最多就以此预测我们的目标值的标签,用术语来说这个叫做“多数表决规则”,这跟操作系统中取内存时的“局部性原理”有点相似,用古语来说就是:物以类聚,人以群分。这个算法就是这么一个道理了。这次的博原创 2020-06-03 15:29:13 · 404 阅读 · 0 评论 -
感知机--机器学习(1)
1.导读 近日在备战保研和考研之余,想着重温一下李航的《统计学习方法》以及一些常见的入门模型,便当做写一下笔记当做分享。希望对这方面有兴趣的同学可以对此有所了解和学习,欢迎一起交流。为了简洁易懂,我将从概念、模型的提出、学习的算法、以及感知机的对偶形式几个方面配合着代码来进行分享。 2.感知机概念 感知机(perceptron)是二类分类的线性分类模型,其输入为实例的特征向量,输出为实例的类别,取+1和-1二值。感知机对应于输入空间(特征空间)中将实例划分为正负两类的分离超平面,属于判别模型。感知机的学习旨原创 2020-06-01 16:17:11 · 731 阅读 · 1 评论