题目描述
我们称一个由0和1组成的矩阵是和谐的,当且仅当每个元素都有偶数个相邻的1。一个元素相邻的元素包括它本身,及他上下左右的4个元素(如果存在)。给定矩阵的行数和列数,请计算并输出一个和谐的矩阵。注意:所有元素为0的矩阵是不允许的。
分析:
1.这种矩阵的,一个元素和它上下左右有关系的,一般都是高斯消元。
2.把题目转化为亦或方程:因为知道第一行的情况后,后面的都可以递推,所以一直推到第n+1行。根据这一行的数都为0列出方程。
3.再高斯消元啦。
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long LL;
const int maxn=50;
LL a[maxn][maxn],ans[maxn][maxn],b[maxn][maxn];
int n,m;
void Gauss(){
for(int i=1;i<=m;i++){
int j=i;
while(j<=m && !a[j][i]) j++;
if(j>m) continue;
if(i!=j)
for(int k=1;k<=m+1;k++) swap(a[i][k],a[j][k]);
for(int j=i+1;j<=m;j++){
if(a[j][i])
for(int k=i;k<=m+1;k++) a[j][k]^=a[i][k];
}
}
for(int i=m;i>=1;i--){
if(!a[i][i]){
ans[1][i]=1LL;continue;
}
for(int j=i+1;j<=m;j++) a[i][m+1]^=(ans[1][j]*a[i][j]);
ans[1][i]=a[i][m+1];
}
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++) b[1][i]=(1LL<<(i-1));
for(int i=2;i<=n+1;i++)
for(int j=1;j<=m;j++)
b[i][j]=b[i-1][j-1]^b[i-1][j]^b[i-2][j]^b[i-1][j+1];
for(int i=1;i<=m;i++)
for(int j=1;j<=m;j++)
a[i][j]=(b[n+1][i]>>(j-1) & 1LL);
Gauss();
for(int i=1;i<=m;i++) printf("%lld%c",ans[1][i],i==m?'\n':' ');
for(int i=2;i<=n;i++){
for(int j=1;j<=m;j++){
ans[i][j]=ans[i-1][j-1]^ans[i-1][j]^ans[i-2][j]^ans[i-1][j+1];
}
for(int j=1;j<=m;j++) printf("%lld%c",ans[i][j],j==m?'\n':' ');
}
return 0;
}
^_^