[BZOJ4515][Sdoi2016]游戏(树链剖分)

=== ===

这里放传送门

=== ===

题解

没错这就是那个ATP当年写了个部分分结果还爆栈了的题。。。

基本思路就是在线段树的每个节点里面维护一条直线然后标记永久化,如果没有做过这一类题目比较推荐先做一下BZOJ1568。话说这玩意儿好像叫做李超线段树还是什么类似的名字?

然而这个题和那个题最大的区别就是那个题是区间修改单点查询并且每次的直线都是覆盖整个1..n的区间,但这个题是正儿八经的区间修改区间查询,所以要定位到合适的区间再用那个题的方法下放直线。并且因为不能每次查询到最底层所以要对每个节点维护一个Min。并且还有一个问题就是那个题是序列,序列的下标一定是递增的;但这个题是树,往上跑和往下跑都可以,所以自变量不一定是递增还是递减,为了方便比较所以要把所有直线化成同一种形式,要么自变量递增,要么自变量递减。

在查询操作的时候和普通线段树没有多大区别,就是在对路径上所有直线取Min然后在定位到一个完全包含的区间的时候要用维护的那个Min再比较一下。在修改的时候要对直线方程做一下变形让它适应当前定位到的那个区间,就是保证带进去的直线一定是随着下标递增自变量也递增的。

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const long long inf=123456789123456789LL;
int n,m,p[100010],a[200010],nxt[200010],deep[100010],size[100010],fa[100010],son[100010];
int tot,top[100010],cnt,num[100010],w[100010];
long long dis[100010],v[200010],Min[400010];
struct segtree{
    long long k,b;
    int s;
    segtree(long long K=0,long long B=0,int S=0){k=K;b=B;s=S;}
    long long calc(int u){
        long long dist=dis[u]-dis[s];
        return k*dist+b;
    }
}t[400010];
void add(int x,int y,long long val){
    tot++;a[tot]=y;nxt[tot]=p[x];v[tot]=val;p[x]=tot;
}
void dfs(int u,long long last){
    deep[u]=deep[fa[u]]+1;
    dis[u]=dis[fa[u]]+last;
    size[u]=1;son[u]=0;
    for (int i=p[u];i!=0;i=nxt[i])
      if (a[i]!=fa[u]){
         fa[a[i]]=u;dfs(a[i],v[i]);
         size[u]+=size[a[i]];
         if (size[a[i]]>size[son[u]])
           son[u]=a[i];
      }
}
void dfs_again(int u,int tp){
    top[u]=tp;w[u]=++cnt;
    num[cnt]=u;
    if (son[u]!=0) dfs_again(son[u],tp);
    for (int i=p[u];i!=0;i=nxt[i])
      if (a[i]!=fa[u]&&a[i]!=son[u])
        dfs_again(a[i],a[i]);
}
void build(int i,int l,int r){
    t[i]=segtree(0,inf,0);
    Min[i]=inf;
    if (l==r) return;
    int mid=(l+r)>>1;
    build(i<<1,l,mid);
    build((i<<1)+1,mid+1,r);
}
int find_lca(int x,int y){
    while (top[x]!=top[y]){
        if (deep[top[x]]<deep[top[y]]) swap(x,y);
        x=fa[top[x]];
    }
    if (deep[x]>deep[y]) swap(x,y);
    return x;
}
void insert(int i,int l,int r,segtree ins){
    long long M=min(ins.calc(num[l]),ins.calc(num[r]));
    segtree tmp=t[i];
    if (l==r){
        if (M<t[i].calc(num[l])){t[i]=ins;Min[i]=M;}
        return;
    }
    int mid=(l+r)>>1;
    M=min(Min[i],M);//注意对所有直线取min
    if (ins.k>tmp.k) swap(ins,tmp);
    if (ins.calc(num[mid])<tmp.calc(num[mid])){
        t[i]=ins;Min[i]=min(Min[i],M);
        insert(i<<1,l,mid,tmp);
    }else{
        t[i]=tmp;Min[i]=min(Min[i],M);
        insert((i<<1)+1,mid+1,r,ins);
    }
}
void change(int i,int l,int r,int left,int right,segtree ins){
    if (left<=l&&right>=r){
        insert(i,l,r,ins);return;
    }
    int mid=(l+r)>>1;
    if (left<=mid) change(i<<1,l,mid,left,right,ins);
    if (right>mid) change((i<<1)+1,mid+1,r,left,right,ins);
    Min[i]=min(Min[i],min(Min[i<<1],Min[(i<<1)+1]));
}
long long ask(int i,int l,int r,int left,int right){
    int L=max(left,l),R=min(right,r);//注意取最值的时候要取区间的交集
    long long ans=min(t[i].calc(num[L]),t[i].calc(num[R]));
    if (left<=l&&right>=r) return min(ans,Min[i]);
    int mid=(l+r)>>1;
    if (left<=mid) ans=min(ans,ask(i<<1,l,mid,left,right));
    if (right>mid) ans=min(ans,ask((i<<1)+1,mid+1,r,left,right));
    return ans;
}
void Change(int x,int y,long long A,long long B){
    segtree ins;
    int lca=find_lca(x,y),s=x;
    bool rec=true;
    long long base;//true:up; false:down
    while (top[x]!=top[y]){
        if (deep[top[x]]<deep[top[y]]){
            swap(x,y);rec^=1;//记录上行路径还是下行路径
        }
        base=dis[top[x]]+dis[s]-2*dis[lca];//计算链顶的函数值
        if (rec==true) base=dis[s]-dis[top[x]];
        base=A*base+B;
        if (rec==false)
          ins=segtree(A,base,top[x]);
        else ins=segtree(-A,base,top[x]);
        change(1,1,n,w[top[x]],w[x],ins);
        x=fa[top[x]];
    }
    if (deep[x]>deep[y]) swap(x,y);
    else rec^=1;
    base=dis[x]+dis[s]-2*dis[lca];
    if (rec==true) base=dis[s]-dis[x];
    base=A*base+B;
    if (rec==false) ins=segtree(A,base,x);
    else ins=segtree(-A,base,x);
    change(1,1,n,w[x],w[y],ins);
}
long long Query(int x,int y){
    long long ans=inf;
    while (top[x]!=top[y]){
        if (deep[top[x]]<deep[top[y]]) swap(x,y);
        ans=min(ans,ask(1,1,n,w[top[x]],w[x]));
        x=fa[top[x]];
    }
    if (deep[x]>deep[y]) swap(x,y);
    ans=min(ans,ask(1,1,n,w[x],w[y]));
    return ans;
}
int main()
{
    scanf("%d%d",&n,&m);
    for (int i=1;i<n;i++){
        int u,v,w;scanf("%d%d%d",&u,&v,&w);
        add(u,v,w);add(v,u,w);
    }
    dfs(1,0);dfs_again(1,1);
    build(1,1,n);
    for (int i=1;i<=m;i++){
        int type,s,t,a,b;
        scanf("%d%d%d",&type,&s,&t);
        if (type==1){
            scanf("%d%d",&a,&b);
            Change(s,t,a,b);
        }else printf("%I64d\n",Query(s,t));
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值