题意是给定若干条直线,然后有若干个询问,每个询问求该坐标所有直线的最大值。
标记永久化的思想就是当且仅当要更新的值优于该区间的所有值时才更新,否则下放。单点询问时取叶子结点到根的最值。
这题更新直线有3种情况:
1. 完全优于,直接更新就行了,
O(1)
2. 部分优于,仅左/右半边需要一直递归,另一个不递归或变成1情况,
O(logn)
。
3. 不优于,无需更新,
O(1)
。
因此该题的复杂度是 O(nlogn) 。
#include<bits/stdc++.h>
#define lson (rt<<1)
#define rson (rt<<1|1)
using namespace std;
typedef double ld;
const int N=5e4+7;
const int T=50000;
ld p[N<<2],c[N<<2];
void build(int rt,int l,int r)
{
p[rt]=c[rt]=0;
if(l==r) return ;
int m=(l+r)>>1;
build(lson,l,m);
build(rson,m+1,r);
}
inline ld f(int x,ld &a1, ld &d)
{
return a1+(x-1)*d;
}
void update(int rt,int l,int r,ld a1,ld d)
{
if(l==r)
{
if(f(r,a1,d)>f(r,c[rt],p[rt]))
{
c[rt]=a1;
p[rt]=d;
}
return ;
}
int m=(l+r) >> 1;
ld pfl=f(l,c[rt],p[rt]),pfr=f(r,c[rt],p[rt]),pfm=f(m,c[rt],p[rt]);
ld fl=f(l,a1,d),fr=f(r,a1,d),fm=f(m,a1,d);
if(fl>=pfl&&fr>=pfr)
{
c[rt]=a1;
p[rt]=d;
return ;
}
else if(fl<=pfl&&fr>=pfr)
{
if(fm>=pfm) update(lson,l,m,a1,d);
update(rson,m+1,r,a1,d);
}
else if(fl>=pfl&&fr<=pfr)
{
if(fm>pfm) update(rson,m+1,r,a1,d);
update(lson,l,m,a1,d);
}
}
ld query(int rt,int l,int r,int x)
{
if(l==r) return f(l,c[rt],p[rt]);
int m=(l+r)>>1;
ld res=f(x,c[rt],p[rt]);
if(x<=m) res=max(res,query(lson,l,m,x));
else res=max(res,query(rson,m+1,r,x));
return res;
}
int main()
{
int q;
while(~scanf("%d",&q))
{
char op[100];
build(1,1,T);
while(q--)
{
scanf("%s",op);
if(op[0]=='P')
{
ld a1,d;
scanf("%lf%lf",&a1,&d);
update(1,1,T,a1,d);
}
else
{
int x;
scanf("%d",&x);
printf("%lld\n",(long long)(query(1,1,T,x)/100));
}
}
}
return 0;
}