BZOJ - 1568 - Blue Mary开公司(线段树标记永久化)

BZOJ - 1568 - Blue Mary开公司

题意是给定若干条直线,然后有若干个询问,每个询问求该坐标所有直线的最大值。
标记永久化的思想就是当且仅当要更新的值优于该区间的所有值时才更新,否则下放。单点询问时取叶子结点到根的最值。
这题更新直线有3种情况:
1. 完全优于,直接更新就行了, O(1)
2. 部分优于,仅左/右半边需要一直递归,另一个不递归或变成1情况, O(logn)
3. 不优于,无需更新, O(1)

因此该题的复杂度是 O(nlogn)

#include<bits/stdc++.h>
#define lson (rt<<1)
#define rson (rt<<1|1)
using namespace std;
typedef double ld;
const int N=5e4+7;
const int T=50000;
ld p[N<<2],c[N<<2];
void build(int rt,int l,int r)
{
    p[rt]=c[rt]=0;
    if(l==r) return ;
    int m=(l+r)>>1;
    build(lson,l,m);
    build(rson,m+1,r);
}
inline ld f(int x,ld &a1, ld &d)
{
    return a1+(x-1)*d;
}
void update(int rt,int l,int r,ld a1,ld d)
{
    if(l==r)
    {
        if(f(r,a1,d)>f(r,c[rt],p[rt]))
        {
            c[rt]=a1;
            p[rt]=d;
        }
        return ;
    }
    int m=(l+r) >> 1;
    ld pfl=f(l,c[rt],p[rt]),pfr=f(r,c[rt],p[rt]),pfm=f(m,c[rt],p[rt]);
    ld fl=f(l,a1,d),fr=f(r,a1,d),fm=f(m,a1,d);
    if(fl>=pfl&&fr>=pfr)
    {
        c[rt]=a1;
        p[rt]=d;
        return ;
    }
    else if(fl<=pfl&&fr>=pfr)
    {
        if(fm>=pfm) update(lson,l,m,a1,d);
        update(rson,m+1,r,a1,d);
    }
    else if(fl>=pfl&&fr<=pfr)
    {
        if(fm>pfm) update(rson,m+1,r,a1,d);
        update(lson,l,m,a1,d);
    }
}
ld query(int rt,int l,int r,int x)
{
    if(l==r) return f(l,c[rt],p[rt]);
    int m=(l+r)>>1;
    ld res=f(x,c[rt],p[rt]);
    if(x<=m) res=max(res,query(lson,l,m,x));
    else res=max(res,query(rson,m+1,r,x));
    return res;
}
int main()
{
    int q;
    while(~scanf("%d",&q))
    {
        char op[100];
        build(1,1,T);
        while(q--)
        {
            scanf("%s",op);
            if(op[0]=='P')
            {
                ld a1,d;
                scanf("%lf%lf",&a1,&d);
                update(1,1,T,a1,d);
            }
            else
            {
                int x;
                scanf("%d",&x);
                printf("%lld\n",(long long)(query(1,1,T,x)/100));
            }
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值