[COGS2287][HZOI 2015]疯狂的机器人(NTT)

=== ===

这里放传送门

=== ===

题解

首先把机器人的路径分成上下和左右两部分考虑。
设上下一共走了i步,方案数为 c[i] 。那么因为最后要回到原点,所以 i 必须是偶数,并且向上和向下分别走了i2步。而又因为不能走出第一象限,所以任意时刻向上走的步数不能小于向下走的步数。
可以看出这实际上就是第 i2 项卡特兰数。
那么如果不考虑不走的情况,设一共走了 i 步的方案数为f[i],那么显然 f[i]=j=0ic[j]c[ij]Cji=c[j]c[ij]i!j!(ij)!
g[i]=c[i]i! ,那么 f[i]=i!j=1ig[j]g[ij]
显然可以用NTT进行加速。
最后统计答案的时候枚举有多少步不走,那么 ans=i=0nCinf[ni]

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const long long Mod=998244353;
int n,G,L,R[300010],N,M;
long long Ct[300010],mul[300010],g[300010],f[300010],ans,tmp;
long long powww(long long a,int t,long long Mod){
    long long ans=1;a%=Mod;
    while (t!=0){
        if (t&1) ans=(ans*a)%Mod;
        a=(a*a)%Mod;t>>=1;
    }
    return ans;
}
int calc(int x){
    bool flag;
    if (x==2) return 1;
    for (int i=2;;i++){
        flag=true;
        for (int j=2;j*j<x;j++)
          if (powww(i,(x-1)/j,x)==1){
              flag=false;break;
          }
        if (flag==true) return i;
    }
}
long long C(int n,int m){
    long long up,down;
    up=mul[n];down=mul[m]*mul[n-m]%Mod;
    up=up*powww(down,Mod-2,Mod)%Mod;
    return up;
}
void NTT(long long *a,int N,int opt){
    long long wn,w,x,y;
    for (int i=0;i<N;i++)
      if (i<R[i]) swap(a[i],a[R[i]]);
    for (int k=1;k<N;k<<=1){
        wn=powww(G,(Mod-1)/(k<<1),Mod);
        for (int p=(k<<1),i=0;i<N;i+=p){
            w=1;
            for (int j=0;j<k;j++){
                x=a[i+j];y=w*a[i+j+k]%Mod;
                a[i+j]=(x+y)%Mod;a[i+j+k]=(x-y)%Mod;
                w=(w*wn)%Mod;
            }
        }
    }
    if (opt==-1) reverse(a+1,a+N);
}
int main()
{
    scanf("%d",&n);
    G=calc(Mod);mul[0]=1;M=n+n;
    for (N=1;N<=M;N<<=1) L++;
    for (int i=0;i<N;i++)
      R[i]=(R[i>>1]>>1)|((i&1)<<(L-1));
    for (int i=1;i<=N;i++) mul[i]=(mul[i-1]*i)%Mod;
    for (int i=2;i<=n;i+=2)
      Ct[i]=(C(i,i/2)-C(i,i/2-1))%Mod;
    for (int i=0;i<=n;i++)
      g[i]=Ct[i]*powww(mul[i],Mod-2,Mod)%Mod;
    g[0]=1;NTT(g,N,1);
    for (int i=0;i<=N;i++) f[i]=g[i]%Mod*g[i]%Mod;
    NTT(f,N,-1);tmp=powww(N,Mod-2,Mod);
    for (int i=0;i<=N;i++) f[i]=f[i]*tmp%Mod*mul[i]%Mod;
    for (int i=0;i<=n;i++) ans=(ans+f[i]*C(n,i)%Mod)%Mod;
    ans=(ans+Mod)%Mod;
    printf("%I64d\n",ans);
    return 0;

}

偏偏在最后出现的补充说明

做FFT和NTT相关的题目的时候要有意识地尽量往卷积的方面考虑

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值