多项式全操作小讲 COGS2189 帕秋莉的超级多项式

乘法

戳我

求逆

戳我

开根

戳我

求导

将多项式 A A A求导,求导结果是 B B B,则 B i = ( i + 1 ) A i + 1 B_i=(i+1)A_{i+1} Bi=(i+1)Ai+1

积分

将多项式 A A A积分,积分结果是 B B B,则 B i = A i − 1 i B_i=\frac{A_{i-1}}{i} Bi=iAi1

求ln

一般要求求ln的题,常数项都为0.
考虑求 G ( F ( x ) ) G(F(x)) G(F(x)),其中 G ( x ) = l n x G(x)=ln x G(x)=lnx
我们知道若有 y = f ( g ( x ) ) , u = g ( x ) y=f(g(x)),u=g(x) y=f(g(x)),u=g(x),则 d y d x = d y d u d u d x = f ′ ( u ) g ′ ( x ) \frac{dy}{dx}=\frac{dy}{du} \frac{du}{dx}=f'(u)g'(x) dxdy=dudydxdu=f(u)g(x)
也知道对 l n x ln x lnx求导的结果是 1 x \frac{1}{x} x1
所以对原式求导,得 F ′ ( x ) F ( x ) \frac{F'(x)}{F(x)} F(x)F(x),然后积分即可。

求exp

求满足 e G ( x ) = F ( x ) e^{G(x)}=F(x) eG(x)=F(x) F ( x ) F(x) F(x)。则有 l n F ( x ) − G ( x ) = 0 ln F(x)-G(x)=0 lnF(x)G(x)=0。考虑牛顿迭代,设 H ( x ) H(x) H(x)为在   m o d   x n 2 \bmod{x^{\frac{n}{2}}} modx2n下的解,则有 F ( x ) = ( 1 − l n H ( x ) + G ( x ) ) H ( x ) F(x)=(1-ln H(x)+G(x))H(x) F(x)=(1lnH(x)+G(x))H(x)
会求ln和exp后,显然所有指数函数和对数函数都能搞了。

求幂

快速幂?复杂度不够优秀!
忘了说了,这种不断将 n n n的规模缩小至 1 2 \frac{1}{2} 21,在每层上做 n l o g n n log n nlogn的计算,复杂度都是 O ( n l o g n ) O(n log n) O(nlogn)的,也就是上面这些操作都是 O ( n l o g n ) O(n log n) O(nlogn)的。但是如果你用快速幂求幂的话,就是 O ( n l o g 2 n ) O(n log^2 n) O(nlog2n)的了,这样不太好。
考虑 F k ( x ) = e l n F k ( x ) = e k l n F ( x ) F^k(x)=e^{ln F^k(x)}=e^{klnF(x)} Fk(x)=elnFk(x)=eklnF(x),变成了 O ( n l o g n ) O(nlog n) O(nlogn)的。

放上代码后,再讲一点点。

#include<bits/stdc++.h>
using namespace std;
#define RI register int
int read() {
	int q=0;char ch=' ';
	while(ch<'0'||ch>'9') ch=getchar();
	while(ch>='0'&&ch<='9') q=q*10+ch-'0',ch=getchar();
	return q;
}
const int N=262150,mod=998244353,inv2=499122177,G=3;
int n,K,kn=1;
int A[N],B[N],len[N],rev[N],inv[N];
int k1[N],k2[N],k3[N],k4[N],k5[N],k6[N],k7[N],k8[N];
int ksm(int x,int y) {
	int re=1;
	for(;y;y>>=1,x=1LL*x*x%mod) if(y&1) re=1LL*re*x%mod;
	return re;
}
int qm(int x) {return x>=mod?x-mod:x;}
void QAQ(int n) {for(RI i=0;i<n;++i) A[i]=B[i],B[i]=0;}
void NTT(int *a,int n,int x) {
	for(RI i=0;i<n;++i) if(rev[i]>i) swap(a[i],a[rev[i]]);
	for(RI i=1;i<n;i<<=1) {
		int gn=ksm(G,(mod-1)/(i<<1));
		for(RI j=0;j<n;j+=(i<<1)) {
			int t1,t2,g=1;
			for(RI k=0;k<i;++k,g=1LL*g*gn%mod) {
				t1=a[j+k],t2=1LL*g*a[j+i+k]%mod;
				a[j+k]=qm(t1+t2),a[j+i+k]=qm(t1+mod-t2);
			}
		}
	}
	if(x==1) return;
	reverse(a+1,a+n);
	for(RI i=0;i<n;++i) a[i]=1LL*a[i]*inv[n]%mod;
}
void getrev(int n)
	{for(RI i=0;i<n;++i) rev[i]=(rev[i>>1]>>1)|((i&1)<<(len[n]-1));}
void getinv(int *a,int *b,int n) {
	if(n==1) {b[0]=ksm(a[0],mod-2),b[1]=0;return;}
	getinv(a,b,n>>1);int kn=n<<1;
	for(RI i=0;i<n;++i) k3[i]=a[i],k3[i+n]=b[i+n]=0;
	getrev(kn),NTT(k3,kn,1),NTT(b,kn,1);
	for(RI i=0;i<kn;++i) b[i]=1LL*(2LL-1LL*b[i]*k3[i]%mod+mod)%mod*b[i]%mod;
	NTT(b,kn,-1);
	for(RI i=n;i<kn;++i) b[i]=0;
}
void getsqrt(int *a,int *b,int n) {
	if(n==1) {b[0]=sqrt(a[0]),b[1]=0;return;}
	getsqrt(a,b,n>>1);int kn=n<<1;
	getinv(b,k1,n);
	for(RI i=0;i<n;++i) k2[i]=a[i],k2[i+n]=k1[i+n]=b[i+n]=0;
	getrev(kn),NTT(k1,kn,1),NTT(k2,kn,1),NTT(b,kn,1);
	for(RI i=0;i<kn;++i) b[i]=1LL*qm(b[i]+1LL*k2[i]*k1[i]%mod)*inv2%mod;
	NTT(b,kn,-1);
	for(RI i=n;i<kn;++i) b[i]=0;
}
void getJF(int *a,int *b,int n)
	{for(RI i=1;i<n;++i) b[i]=1LL*a[i-1]*inv[i]%mod;b[0]=0;}
void getdao(int *a,int *b,int n)
	{for(RI i=1;i<n;++i) b[i-1]=1LL*a[i]*i%mod,b[n-1]=0;}
void getln(int *a,int *b,int n) {
	getdao(a,k6,n),getinv(a,k7,n);
	int kn=n<<1;
	for(RI i=n;i<kn;++i) k6[i]=k7[i]=0;
	getrev(kn),NTT(k6,kn,1),NTT(k7,kn,1);
	for(RI i=0;i<kn;++i) k6[i]=1LL*k6[i]*k7[i]%mod;
	NTT(k6,kn,-1),getJF(k6,b,n);
	for(RI i=n;i<kn;++i) b[i]=0;
}
void getexp(int *a,int *b,int n) {
	if(n==1) {b[0]=1,b[1]=0;return;}
	getexp(a,b,n>>1);int kn=n<<1;
	getln(b,k4,n);
	for(RI i=0;i<n;++i) k5[i]=qm(a[i]-k4[i]+mod),k5[i+n]=b[i+n]=0;
	k5[0]=qm(k5[0]+1);
	getrev(kn),NTT(b,kn,1),NTT(k5,kn,1);
	for(RI i=0;i<kn;++i) b[i]=1LL*b[i]*k5[i]%mod;
	NTT(b,kn,-1);
	for(RI i=n;i<kn;++i) b[i]=0;
}
void getksm(int *a,int *b,int n,int K) {
	getln(a,k8,n);
	for(RI i=0;i<n;++i) k8[i]=1LL*k8[i]*K%mod;
	getexp(k8,b,n);
}
int main()
{
	n=read(),K=read()%mod;
	for(RI i=0;i<n;++i) A[i]=read();
	while(kn<n) kn<<=1,len[kn]=len[kn>>1]+1;
	len[kn<<1]=len[kn]+1;
	inv[1]=1;for(RI i=2;i<=(kn<<1);++i) inv[i]=1LL*(mod-mod/i)*inv[mod%i]%mod;
	getsqrt(A,B,kn),QAQ(kn);
	getinv(A,B,kn),QAQ(kn);
	getJF(A,B,n),QAQ(kn);
	getexp(A,B,kn),QAQ(kn);
	getinv(A,B,kn),QAQ(kn),A[0]=qm(A[0]+1);
	getln(A,B,kn),QAQ(kn),A[0]=qm(A[0]+1);
	getksm(A,B,kn,K),QAQ(kn);
	getdao(A,B,n);
	for(RI i=0;i<n;++i) printf("%d ",B[i]);
	return 0;
}

除法

关键在于除数与被除数的度数不同,就不能直接多项式求逆来做,很烦。
F R ( x ) F^R(x) FR(x)表示将 F ( x ) F(x) F(x)翻转,也就是设 F ( x ) F(x) F(x) n n n次多项式,那么 F R ( x ) = x n F ( 1 x ) F^R(x)=x^n F(\frac{1}{x}) FR(x)=xnF(x1)
设要求 H ( x ) = G ( x ) F ( x ) H(x)=\frac{G(x)}{F(x)} H(x)=F(x)G(x),其中 G ( x ) G(x) G(x) n n n次的, F ( x ) F(x) F(x) m m m次的。设余数为 Q ( x ) Q(x) Q(x),那么 G ( x ) = H ( x ) F ( x ) + Q ( x ) G(x)=H(x)F(x)+Q(x) G(x)=H(x)F(x)+Q(x)
等式的 x x x全部变成 1 x \frac{1}{x} x1,然后乘上 x n x^n xn
那么: x n G ( 1 x ) = x m H ( 1 x ) x n − m F ( 1 x ) + x n − m + 1 x m − 1 Q ( 1 x ) x^n G(\frac{1}{x})=x^mH(\frac{1}{x})x^{n-m}F(\frac{1}{x})+x^{n-m+1}x^{m-1}Q(\frac{1}{x}) xnG(x1)=xmH(x1)xnmF(x1)+xnm+1xm1Q(x1)
也就是: G R ( x ) = H R ( x ) F R ( x ) + x n − m + 1 Q R ( x ) G^R(x)=H^R(x)F^R(x)+x^{n-m+1}Q^R(x) GR(x)=HR(x)FR(x)+xnm+1QR(x)
发现在模 x n − m + 1 x^{n-m+1} xnm+1意义下, Q ( x ) Q(x) Q(x)每一项都是0。
所以 G R ( x ) = H R ( x ) F R ( x ) ( m o d x n − m + 1 ) G^R(x)=H^R(x)F^R(x) \pmod{x^{n-m+1}} GR(x)=HR(x)FR(x)(modxnm+1)
真完美,多项式求逆可以解决本题啦。
放出洛谷P4512的代码:

#include<bits/stdc++.h>
using namespace std;
#define RI register int
int read() {
    int q=0;char ch=' ';
    while(ch<'0'||ch>'9') ch=getchar();
    while(ch>='0'&&ch<='9') q=q*10+ch-'0',ch=getchar();
    return q;
}
const int mod=998244353,N=262150,G=3;
int n,m;
int A[N],revA[N],B[N],revB[N],rev[N],len[N];
int revC[N],kl[N];
int ksm(int x,int y) {
    int re=1;
    for(;y;y>>=1,x=1LL*x*x%mod) if(y&1) re=1LL*re*x%mod;
    return re;
}
void NTT(int *a,int n,int x) {
    for(RI i=0;i<n;++i) if(rev[i]>i) swap(a[i],a[rev[i]]);
    for(RI i=1;i<n;i<<=1) {
        int gn=ksm(G,(mod-1)/(i<<1));
        for(RI j=0;j<n;j+=(i<<1)) {
            int t1,t2,g=1;
            for(RI k=0;k<i;++k,g=1LL*g*gn%mod) {
                t1=a[j+k],t2=1LL*g*a[j+i+k]%mod;
                a[j+k]=(t1+t2)%mod,a[j+i+k]=(t1-t2+mod)%mod;
            }
        }
    }
    if(x==1) return;
    reverse(a+1,a+n);int inv=ksm(n,mod-2);
    for(RI i=0;i<n;++i) a[i]=1LL*a[i]*inv%mod;
}
void getrev(int k)
    {for(RI i=0;i<k;++i) rev[i]=(rev[i>>1]>>1)|((i&1)<<(len[k]-1));}
void getinv(int *a,int *b,int n) {
    if(n==1) {b[0]=ksm(a[0],mod-2);return;}
    getinv(a,b,n>>1);
    int kn=n<<1;getrev(kn);
    for(RI i=0;i<n;++i) kl[i]=a[i],kl[i+n]=0;
    NTT(kl,kn,1),NTT(b,kn,1);
    for(RI i=0;i<kn;++i) b[i]=1LL*(2-1LL*b[i]*kl[i]%mod+mod)%mod*b[i]%mod;
    NTT(b,kn,-1);
    for(RI i=n;i<kn;++i) b[i]=0;
}
int main()
{
    n=read(),m=read();
    for(RI i=0;i<=n;++i) A[i]=revA[n-i]=read();
    for(RI i=0;i<=m;++i) B[i]=revB[m-i]=read();
    int kn=1;while(kn<n-m+1) kn<<=1,len[kn]=len[kn>>1]+1;
    len[kn<<1]=len[kn]+1;
    getinv(revB,revC,kn);
   	kn<<=1;len[kn]=len[kn>>1]+1;
   	for(RI i=n-m+1;i<kn;++i) revA[i]=revC[i]=0;
    getrev(kn),NTT(revC,kn,1),NTT(revA,kn,1);
    for(RI i=0;i<kn;++i) revA[i]=1LL*revA[i]*revC[i]%mod;
    NTT(revA,kn,-1);
    reverse(revA,revA+n-m+1);
    for(RI i=0;i<n-m+1;++i) printf("%d ",revA[i]);
    puts("");
    
    for(RI i=n-m+1;i<kn||i<=n;++i) revA[i]=0;
    while(kn<=n+1) kn<<=1,len[kn]=len[kn>>1]+1;
    getrev(kn);
    NTT(revA,kn,1),NTT(B,kn,1);
    for(RI i=0;i<kn;++i) revA[i]=1LL*revA[i]*B[i]%mod;
    NTT(revA,kn,-1);
    for(RI i=0;i<m;++i) printf("%d ",(A[i]-revA[i]+mod)%mod);
    puts("");
    return 0;
}

插值

插值是获得了 n + 1 n+1 n+1个多项式的点值表达后将该 n n n次多项式还原的操作。
方法是拉格朗日插值多项式:
y = ∑ i = 0 n ∏ j ̸ = i ( x − x j ) ∏ j ̸ = i ( x i − x j ) y i y=\sum_{i=0}^n \frac{\prod_{j \not= i}(x-x_j)}{\prod_{j \not =i}(x_i-x_j)} y_i y=i=0nj̸=i(xixj)j̸=i(xxj)yi
带入该多项式可发现显然 f ( x i ) = y i f(x_i)=y_i f(xi)=yi
emmm…复杂度是 O ( n 2 ) O(n^2) O(n2)的?不过那是 x x x值已知的情况,一定要写出多项式的话,恕本蒟蒻愚钝只会分治NTT搞… O ( n 2 l o g n ) O(n^2logn) O(n2logn)的…
放出洛谷P4781的代码

#include<bits/stdc++.h>
using namespace std;
#define RI register int
const int mod=998244353,N=2005;
int n,K,ans,xx[N],yy[N];
int ksm(int x,int y) {
    int re=1;
    for(;y;y>>=1,x=1LL*x*x%mod) if(y&1) re=1LL*re*x%mod;
    return re;
}
int qm(int x) {return x>=mod?x-mod:x;}
int main()
{
    scanf("%d%d",&n,&K);
    for(RI i=1;i<=n;++i) scanf("%d%d",&xx[i],&yy[i]);
    for(RI i=1;i<=n;++i) {
        int s1=1,s2=1;
        for(RI j=1;j<=n;++j) {
            if(i==j) continue;
            s1=1LL*s1*qm(K-xx[j]+mod)%mod;
            s2=1LL*s2*qm(xx[i]-xx[j]+mod)%mod;
        }
        ans=qm(ans+1LL*s1*ksm(s2,mod-2)%mod*yy[i]%mod);
    }
    printf("%d\n",ans);
    return 0;
}
  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值