poj 1815 最小点割集

23 篇文章 0 订阅
6 篇文章 0 订阅

最小点割集求解方法:

1.有向图:把一个点拆成(i, i+N)2个点,之间容量为1。如果i, j 2个点在原图中联通,则将i+N,j相连,容量为无穷大。然后求最小割,可见被最小割割到的都是容量是1的边,(如果割到一条INF,说明没有最小点割集。)而且那些边必将连着i,i+N,于是i就是被割的点。

2.无向图:把一个点拆成(i, i+N)2个点,之间容量为1。如果i, j 2个点在原图中联通,则将i+N,j相连,容量为无穷大。则将j, i+N相连,容量为无穷大。以下如上。

最小点权割集求解方法:把一个点拆成(i, i+N)2个点,之间容量为点的权值 其余同上。


本题思路:枚举每一个顶点,除了S和T之外,然后求最大流,看看去掉这个顶点和没去掉有没有影响。(最大流变小),要从小到大枚举。

这道题因为不能割源点或者汇点 所以在拆源点和汇点的时候 将边的权值设置为INF 这样就能保证不会割到源点和汇点了。

还有就是没有答案的时候的特判   如果源点和汇点直接相连 那么无论如何都能从源点到达汇点



#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<string>
#include<stack>
#include<queue>
#include<cmath>
#include<stack>
#include<list>
#include<map>
#include<set>
typedef long long ll;
using namespace std;
const int MAXN=405;//jiedian de zui da zhi
const int MAXM=800000;//bian de zui da zhi
const int INF=0x3f3f3f3f;
struct Node
{
    int from,to,next;
    int cap;
}edge[MAXM];
int tol;
int head[MAXN];
int dep[MAXN];
int gap[MAXN];
void init()  //remember write it in main function
{
    tol=0;
    memset(head,-1,sizeof(head));
}

void addedge(int u,int v,int w)
{
    edge[tol].from=u;
    edge[tol].to=v;
    edge[tol].cap=w;
    edge[tol].next=head[u];
    head[u]=tol++;
    edge[tol].from=v;
    edge[tol].to=u;
    edge[tol].cap=0;//wuxiangtu  this place change to w;
    edge[tol].next=head[v];
    head[v]=tol++;
}
void BFS(int start,int end)
{
    memset(dep,-1,sizeof(dep));
    memset(gap,0,sizeof(gap));
    gap[0]=1;
    int que[MAXN];
    int front,rear;
    front=rear=0;
    dep[end]=0;
    que[rear++]=end;
    while(front!=rear)
    {
        int u=que[front++];
        if(front==MAXN)front=0;
        for(int i=head[u];i!=-1;i=edge[i].next)
        {
            int v=edge[i].to;
            if(dep[v]!=-1)continue;
            que[rear++]=v;
            if(rear==MAXN)rear=0;
            dep[v]=dep[u]+1;
            ++gap[dep[v]];
        }
    }
}
int SAP(int start,int end,int n) //n shi jiedian de zui da ge shu ,including source and sink
{
    int res=0;
    BFS(start,end);
    int cur[MAXN];
    int S[MAXN];
    int top=0;
    memcpy(cur,head,sizeof(head));
    int u=start;
    int i;
    while(dep[start]<n)
    {
        if(u==end)
        {
            int temp=INF;
            int inser;
            for(i=0;i<top;i++)
                if(temp>edge[S[i]].cap)
                {
                    temp=edge[S[i]].cap;
                    inser=i;
                }
            for(i=0;i<top;i++)
            {
                edge[S[i]].cap-=temp;
                edge[S[i]^1].cap+=temp;
            }
            res+=temp;
            top=inser;
            u=edge[S[top]].from;
        }
        if(u!=end&&gap[dep[u]-1]==0)
            break;
        for(i=cur[u];i!=-1;i=edge[i].next)
            if(edge[i].cap!=0&&dep[u]==dep[edge[i].to]+1)
                break;
        if(i!=-1)
        {
            cur[u]=i;
            S[top++]=i;
            u=edge[i].to;
        }
        else
        {
            int min=n;
            for(i=head[u];i!=-1;i=edge[i].next)
            {
                if(edge[i].cap==0)continue;
                if(min>dep[edge[i].to])
                {
                    min=dep[edge[i].to];
                    cur[u]=i;
                }
            }
            --gap[dep[u]];
            dep[u]=min+1;
            ++gap[dep[u]];
            if(u!=start)u=edge[S[--top]].from;
        }
    }
    return res;
}

int res[MAXN];
//双向图
int source,sink;
int a[MAXN][MAXN];
int getmap(int n)
{
    init();
    int i,j;
    for(i=1;i<=n;i++)
    {
        if(i==source||i==sink)
            addedge(i, i+n, INF);
        else
            addedge(i, i+n, 1);
        
        for(j=1;j<=n;j++)
        {
            
           
            if(j>i)
            {
                if (a[i][j]) {
                    addedge(i+n, j, INF);
                    addedge(j+n, i, INF);
                }
            }
        }
    }
    
    int tt=SAP(source, sink+n, 2*n);
    return tt;
}
int mapx[MAXN];
int mapy[MAXN];
int main()
{
    int i,j,k;
    int n;
    while(scanf("%d%d%d",&n,&source,&sink)!=EOF)
    {
        init();
        for(i=1;i<=n;i++)
        {
            if(i==source||i==sink)
                addedge(i, i+n, INF);
            else
            addedge(i, i+n, 1);
            for(j=1;j<=n;j++)
            {
                scanf("%d",&k);
                a[i][j]=k;
                if(j>i)
                {
                    if (k) {
                        addedge(i+n, j, INF);
                        addedge(j+n, i, INF);
                    }
                }
            }
        }
        if(a[source][sink]==1){printf("NO ANSWER!\n");continue;}//特判
        
        int tt=SAP(source, sink+n, 2*n);
        
        printf("%d\n",tt);
        int cnt=0;
        for(i=1;i<=n;i++)//delete i
        {
            if(i==source||i==sink)continue;
            for(j=1;j<=n;j++)
            {
                mapx[j]=a[i][j];//将第i行记录下来
                mapy[j]=a[j][i];//将第i列记录下来
                a[i][j]=a[j][i]=0;//全部清零 表示i点与图完全断绝
            }
            int ss=getmap(n);
            if(ss<tt)
            {
                  res[cnt++]=i;
                  tt--;
            }
            else //如果流没有改变 说明此点不是割点 恢复
            {
                for(j=1;j<=n;j++)
                {
                    a[i][j]=mapx[j];
                    a[j][i]=mapy[j];
                }

            }
            
            if(tt==0)break;
          
            
        }
    
        for(i=0;i<cnt;i++)
        {
            printf("%d%c",res[i],i==cnt-1?'\n':' ');
        }
    
        
        
    }
    
    return 0;
   
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值