最小点割集求解方法:
1.有向图:把一个点拆成(i, i+N)2个点,之间容量为1。如果i, j 2个点在原图中联通,则将i+N,j相连,容量为无穷大。然后求最小割,可见被最小割割到的都是容量是1的边,(如果割到一条INF,说明没有最小点割集。)而且那些边必将连着i,i+N,于是i就是被割的点。
2.无向图:把一个点拆成(i, i+N)2个点,之间容量为1。如果i, j 2个点在原图中联通,则将i+N,j相连,容量为无穷大。则将j, i+N相连,容量为无穷大。以下如上。
最小点权割集求解方法:把一个点拆成(i, i+N)2个点,之间容量为点的权值 其余同上。
本题思路:枚举每一个顶点,除了S和T之外,然后求最大流,看看去掉这个顶点和没去掉有没有影响。(最大流变小),要从小到大枚举。
这道题因为不能割源点或者汇点 所以在拆源点和汇点的时候 将边的权值设置为INF 这样就能保证不会割到源点和汇点了。
还有就是没有答案的时候的特判 如果源点和汇点直接相连 那么无论如何都能从源点到达汇点
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<string>
#include<stack>
#include<queue>
#include<cmath>
#include<stack>
#include<list>
#include<map>
#include<set>
typedef long long ll;
using namespace std;
const int MAXN=405;//jiedian de zui da zhi
const int MAXM=800000;//bian de zui da zhi
const int INF=0x3f3f3f3f;
struct Node
{
int from,to,next;
int cap;
}edge[MAXM];
int tol;
int head[MAXN];
int dep[MAXN];
int gap[MAXN];
void init() //remember write it in main function
{
tol=0;
memset(head,-1,sizeof(head));
}
void addedge(int u,int v,int w)
{
edge[tol].from=u;
edge[tol].to=v;
edge[tol].cap=w;
edge[tol].next=head[u];
head[u]=tol++;
edge[tol].from=v;
edge[tol].to=u;
edge[tol].cap=0;//wuxiangtu this place change to w;
edge[tol].next=head[v];
head[v]=tol++;
}
void BFS(int start,int end)
{
memset(dep,-1,sizeof(dep));
memset(gap,0,sizeof(gap));
gap[0]=1;
int que[MAXN];
int front,rear;
front=rear=0;
dep[end]=0;
que[rear++]=end;
while(front!=rear)
{
int u=que[front++];
if(front==MAXN)front=0;
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].to;
if(dep[v]!=-1)continue;
que[rear++]=v;
if(rear==MAXN)rear=0;
dep[v]=dep[u]+1;
++gap[dep[v]];
}
}
}
int SAP(int start,int end,int n) //n shi jiedian de zui da ge shu ,including source and sink
{
int res=0;
BFS(start,end);
int cur[MAXN];
int S[MAXN];
int top=0;
memcpy(cur,head,sizeof(head));
int u=start;
int i;
while(dep[start]<n)
{
if(u==end)
{
int temp=INF;
int inser;
for(i=0;i<top;i++)
if(temp>edge[S[i]].cap)
{
temp=edge[S[i]].cap;
inser=i;
}
for(i=0;i<top;i++)
{
edge[S[i]].cap-=temp;
edge[S[i]^1].cap+=temp;
}
res+=temp;
top=inser;
u=edge[S[top]].from;
}
if(u!=end&&gap[dep[u]-1]==0)
break;
for(i=cur[u];i!=-1;i=edge[i].next)
if(edge[i].cap!=0&&dep[u]==dep[edge[i].to]+1)
break;
if(i!=-1)
{
cur[u]=i;
S[top++]=i;
u=edge[i].to;
}
else
{
int min=n;
for(i=head[u];i!=-1;i=edge[i].next)
{
if(edge[i].cap==0)continue;
if(min>dep[edge[i].to])
{
min=dep[edge[i].to];
cur[u]=i;
}
}
--gap[dep[u]];
dep[u]=min+1;
++gap[dep[u]];
if(u!=start)u=edge[S[--top]].from;
}
}
return res;
}
int res[MAXN];
//双向图
int source,sink;
int a[MAXN][MAXN];
int getmap(int n)
{
init();
int i,j;
for(i=1;i<=n;i++)
{
if(i==source||i==sink)
addedge(i, i+n, INF);
else
addedge(i, i+n, 1);
for(j=1;j<=n;j++)
{
if(j>i)
{
if (a[i][j]) {
addedge(i+n, j, INF);
addedge(j+n, i, INF);
}
}
}
}
int tt=SAP(source, sink+n, 2*n);
return tt;
}
int mapx[MAXN];
int mapy[MAXN];
int main()
{
int i,j,k;
int n;
while(scanf("%d%d%d",&n,&source,&sink)!=EOF)
{
init();
for(i=1;i<=n;i++)
{
if(i==source||i==sink)
addedge(i, i+n, INF);
else
addedge(i, i+n, 1);
for(j=1;j<=n;j++)
{
scanf("%d",&k);
a[i][j]=k;
if(j>i)
{
if (k) {
addedge(i+n, j, INF);
addedge(j+n, i, INF);
}
}
}
}
if(a[source][sink]==1){printf("NO ANSWER!\n");continue;}//特判
int tt=SAP(source, sink+n, 2*n);
printf("%d\n",tt);
int cnt=0;
for(i=1;i<=n;i++)//delete i
{
if(i==source||i==sink)continue;
for(j=1;j<=n;j++)
{
mapx[j]=a[i][j];//将第i行记录下来
mapy[j]=a[j][i];//将第i列记录下来
a[i][j]=a[j][i]=0;//全部清零 表示i点与图完全断绝
}
int ss=getmap(n);
if(ss<tt)
{
res[cnt++]=i;
tt--;
}
else //如果流没有改变 说明此点不是割点 恢复
{
for(j=1;j<=n;j++)
{
a[i][j]=mapx[j];
a[j][i]=mapy[j];
}
}
if(tt==0)break;
}
for(i=0;i<cnt;i++)
{
printf("%d%c",res[i],i==cnt-1?'\n':' ');
}
}
return 0;
}