上一套基于二分搜索的lca倍增算法模板
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<string>
#include<stack>
#include<queue>
#include<cmath>
#include<stack>
#include<list>
#include<map>
#include<set>
typedef long long ll;
#define exp 1e-8
#define up(i,x,y) for(i=x;i<=y;i++)
#define down(i,x,y) for(i=x;i>=y;i--)
#define mem(a,x) memset(a,x,sizeof(a))
using namespace std;
const int N = 5005*2;//最大节点个数
const int MAX_LOG_V =25;//比最大深度大一点就好
vector<int>G[N];
int root;
int parent[MAX_LOG_V][N];
int depth[N];
int f[N];
void dfs(int v,int p,int d)
{
parent[0][v]=p;
depth[v]=d;
for(int i=0;i<G[v].size();i++)
{
if(G[v][i]!=p)dfs(G[v][i],v,d+1);
}
}
void init(int V)
{
dfs(root,-1,0);
for(int k=0;k+1<MAX_LOG_V;k++)
{
for(int v=0;v<V;v++)
{
if(parent[k][v]<0)
parent[k+1][v]=-1;
else parent[k+1][v]=parent[k][parent[k][v]];
}
}
}
int lca(int u,int v)
{
if(depth[u]>depth[v])swap(u,v);
for(int k=0;k+1<MAX_LOG_V;k++)
{
if((depth[v]-depth[u])>>k&1)
v=parent[k][v];
}//使u和v的深度相同
if(u==v)return u;//深度相同且恰好为同一个节点 直接return
for(int k=MAX_LOG_V-1;k>=0;k--)//找到u和v的最近公共祖先
{
if(parent[k][u]!=parent[k][v])
{
u=parent[k][u];
v=parent[k][v];
}
}
return parent[0][u];
}
int main()
{
int T,i,j,k,m,n;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(i=0;i<N;i++)
{
G[i].clear();
}
mem(f,-1);
for(i=1;i<=n-1;i++)
{
int a,b;
scanf("%d%d",&a,&b);
f[b-1]=a-1;//求root的编号 习惯从0开始编号
G[a-1].push_back(b-1);//双向图
G[b-1].push_back(a-1);
}
for(i=0;i<n;i++)//求root的编号
{
if(f[i]==-1)
{
root=i;
break;
}
}
//mem(parent,-1);
init(n);
scanf("%d%d",&i,&j);
printf("%d\n",lca(i-1,j-1)+1);
}
}