LCA(倍增)及其模板

这篇博客介绍了如何利用倍增算法解决树上最短公共祖先(LCA)问题,详细阐述了算法思路,并提供了具体的实现代码。通过将节点向上跳跃2的幂次层数,可以在O(logn)时间内完成查询,整体复杂度为O((n+q)logn)。
摘要由CSDN通过智能技术生成
题目描述

给定一棵 n n n个点的树, Q Q Q个询问,每次询问点 x x x到点 y y y两点之间的距离。

输入输出格式
输入格式:

第一行一个正整数 n n n,表示这棵树有 n n n个节点,其中节点 1 1 1为根节点;

接下来 n − 1 n−1 n1行,每行两个整数 x x x y y y,表示 x x x y y y之间有一条连边; 然后一个整数 Q Q Q,表示有 Q Q Q个询问;

接下来 Q Q Q行,每行两个整数 x x x y y y表示询问 x x x y y y的距离。

输出格式:

输出 Q Q Q行,每行表示每个询问的答案。

输入输出样例
输入样例#1:

6
1 2
1 3
2 4
2 5
3 6
2
2 6
5 6

输出样例#1:

3
4

说明

【数据范围】

对于全部数据, 1 ≤ n , m , Q ≤ 1 0 5 1≤n,m,Q≤10^5 1n,m,Q105 1 ≤ x , y ≤ n 1≤x,y≤n 1x,yn

算法

我们知道,

D i s ( x , y ) = D e p ( x ) + D e p ( y ) − 2 ∗ D e p ( G r a n d ) Dis(x,y)=Dep(x)+Dep(y)-2*Dep(Grand) Dis(x,y)=Dep(x)+Dep(y)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值