题意:给定n个整数a[i]和一个k,对于每一个整数x会有一个数组{x%a[1],x%a[2]....,x%a[n]},要求判断是否能根据一个数组判断出x%k。
分析:我们可以将数组的每一位分开看,显然a[i]的循环节是a[i],那么我们就能知道整体的循环节即最小公倍数lcm。那么我们只需要判断lcm能否整除k。
代码:
#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<bitset>
#include<math.h>
#include<vector>
#include<string>
#include<stdio.h>
#include<cstring>
#include<iostream>
#include<algorithm>
#pragma comment(linker, "/STACK:102400000,102400000")
using namespace std;
const int N=1000010;
const int MAX=1000000100;
const int mod=100000000;
const int MOD1=1000000007;
const int MOD2=1000000009;
const double EPS=0.00000001;
typedef long long ll;
const ll MOD=1000000007;
const int INF=1000000010;
const double pi=acos(-1.0);
typedef double db;
typedef unsigned long long ull;
ll a[N];
ll gcd(ll a,ll b) {
return b==0 ? a:gcd(b,a%b);
}
int main()
{
int i,n;
ll k,g,lcm=1;
scanf("%d%I64d", &n, &k);
for (i=1;i<=n;i++) {
scanf("%I64d", &a[i]);
lcm=lcm/gcd(lcm,a[i])*a[i];
lcm=gcd(lcm,k);
if (lcm==k) break ;
}
if (k==lcm) printf("Yes\n");
else printf("No\n");
return 0;
}