hdu3516Tree Construction

链接:http://acm.hdu.edu.cn/showproblem.php?pid=3516

题意:给定n个点(x,y),并且保证xi<xj&&yi>yj当i<j。要求建一颗树,树的边只能向上和向右生长,求将所有点都连起来树的长度最小。

代码:因为题目保证的数据关系和树的生长要求,我们很容易想到是区间dp,但是这是n^3的即dp[i][j]=min(dp[i][k]+dp[k+1][j]+dis(i,k,k+1,j)),这个dp的意义是一颗以(xi,yj)为根的子树包含了i~j所有的点。看到一些网上的题解说这是四边形优化dp,但是却没人证明这个dp方程中用到的w[i][j]是满足四边形不等式的。我也不会证,我只能大概想象得到dp[i][j]的决策点要在dp[i][j-1]的右边,因为我们能想象一下新加进来一个点a[j],我们只能是通过将一些原来的i~j-1的点的后面那些点与j一起合成一个子树再和前面那部分点合成一棵大树。。我只能解释到这里了,同理决策点在dp[i+1][j]的左边。

代码:

#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<bitset>
#include<math.h>
#include<vector>
#include<string>
#include<stdio.h>
#include<cstring>
#include<iostream>
#include<algorithm>
#pragma comment(linker, "/STACK:102400000,102400000")
using namespace std;
const int N=1010;
const int mod=100000000;
const int MOD1=1000000007;
const int MOD2=1000000009;
const double EPS=0.00000001;
typedef long long ll;
const ll MOD=1000000007;
const int INF=1000000010;
const ll MAX=1000000000000;
const double pi=acos(-1.0);
typedef double db;
typedef unsigned long long ull;
struct node {
    int x,y;
}a[N];
int s[N][N],dp[N][N];
int dis(int x,int y,int z,int w) {
    return a[y].y-a[w].y+a[z].x-a[x].x;
}
int main()
{
    int i,j,k,n;
    while (scanf("%d", &n)!=EOF) {
        for (i=1;i<=n;i++) scanf("%d%d", &a[i].x, &a[i].y);
        memset(dp,0x3f,sizeof(dp));
        for (i=1;i<=n;i++) dp[i][i]=0,s[i][i]=i;
        for (i=2;i<=n;i++)
            for (j=n-i+1;j;j--)
                for (k=s[j][j+i-2];k<j+i-1&&k<=s[j+1][j+i-1];k++)
                if (dp[j][k]+dp[k+1][j+i-1]+dis(j,k,k+1,j+i-1)<=dp[j][j+i-1]) {
                    dp[j][j+i-1]=dp[j][k]+dp[k+1][j+i-1]+dis(j,k,k+1,j+i-1);s[j][j+i-1]=k;
                }
        printf("%d\n", dp[1][n]);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值