hdu3516 Tree Construction

Problem Description
Consider a two-dimensional space with a set of points (xi, yi) that satisfy xi < xj and yi > yj for all i < j. We want to have them all connected by a directed tree whose edges go toward either right (x positive) or upward (y positive). The figure below shows an example tree.


Write a program that finds a tree connecting all given points with the shortest total length of edges.
 

Input
The input begins with a line that contains an integer n (1 <= n <= 1000), the number of points. Then n lines follow. The i-th line contains two integers xi and yi (0 <= xi, yi <= 10000), which give the coordinates of the i-th point.
 

Output
Print the total length of edges in a line.
 

Sample Input
  
  
5 1 5 2 4 3 3 4 2 5 1 1 10000 0
 

Sample Output
  
  
12 0

这题要注意树的左端点必定在左上端点向下做垂线和右下端点向左作垂线的交点,思路和石子合并差不多,需要用四边形优化。

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
#define ll long long
#define inf 999999999
int x[1006],y[1006],dp[1006][1006],s[1006][1006];
int dis(int x1,int y1,int x2,int y2){
    return abs(x1-x2)+abs(y1-y2);
}

int main()
{
    int n,m,i,j,len,k;
    while(scanf("%d",&n)!=EOF)
    {
        for(i=1;i<=n;i++){
            scanf("%d%d",&x[i],&y[i]);
            dp[i][i]=0;
        }
        for(i=1;i<=n-1;i++){
            s[i][i+1]=i;
            dp[i][i+1]=dis(x[i],y[i],x[i+1],y[i+1]);
        }
        for(len=3;len<=n;len++){
            for(i=1;i+len-1<=n;i++){
                j=i+len-1;
                dp[i][j]=inf;

                for(k=s[i][j-1];k<=s[i+1][j];k++){
                    if(dp[i][j]>dp[i][k]+dp[k+1][j]+abs(y[j]-y[k])+abs(x[i]-x[k+1]) ){
                        dp[i][j]=dp[i][k]+dp[k+1][j]+abs(y[j]-y[k])+abs(x[i]-x[k+1]);
                        s[i][j]=k;
                    }
                }
            }
        }
        printf("%d\n",dp[1][n]);

    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值