题意:给定一棵n个节点的树,a到b边权c的意义表示a到b有2*c条不同的边,求从1开始遍历这颗树有多少种不同的排列。
分析:将样例中的树画出来我们可以看出一些规律,有些点只能出现在一些特定的位置,比如1只会出现在奇数位且又不是任意奇数位。这个题并不能随便排列而是有些限制。我们需要找到某个依据使得点的排列有迹可循。在分析看看我们会发现我们能知道一个点在遍历中出现的次数是父亲到自己的边权c+自己到儿子们的边权c+1。这说明我们知道了每个点应该在排列中出现多少次,但是这样还不够。我们会发现只有确定当前节点x它的位置是一定出现在它父亲后面的,那么我们只要确定出现父亲的第几次的后面就行啦,比如父亲会出现g次(因为最后一次后面是跟父亲而不是儿子,所有儿子能选择的实际位置是g-1),那么我们只要求出C(g-1,k)即可,对于每个点后面跟的是哪个儿子确定下来后那么我们就确定了整个排列。
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <map>
#include <vector>
using namespace std;
const int N=100010;
const int M=2000010;
typedef long long ll;
const ll mod=1000000007;
ll ans,p[M],j[M],inv[M];
void deal(int n) {
p[0]=inv[1]=p[1]=j[1]=1ll;
for (int i=2;i<=n;i++) {
j[i]=j[i-1]*i*1ll%mod;
inv[i]=(mod-mod/i)*inv[mod%i]%mod;
p[i]=p[i-1]*inv[i]%mod;
}
}
int tot,u[N],v[2*N],w[2*N],pre[2*N];
void add(int a,int b,int c) {
v[tot]=b;w[tot]=c;pre[tot]=u[a];u[a]=tot++;
}
int f[N],g[N],fa[N];
void dfs(int a,int b,int c) {
int i,bo=0;
f[a]=g[a]=c;fa[a]=b;
for (int i=u[a];~i;i=pre[i])
if (v[i]!=b) dfs(v[i],a,w[i]),g[a]+=w[i],bo=1;
g[a]-=bo;
}
ll get(int m,int n) {
return j[n]*p[m]%mod*p[n-m]%mod;
}
int main(){
int a,b,c,i,n;
deal(2000000);
while (scanf("%d", &n)!=EOF) {
for (tot=0,i=1;i<=n;i++) u[i]=-1;
ans=1;
for (i=1;i<n;i++) {
scanf("%d%d%d", &a, &b, &c);
add(a,b,c);add(b,a,c);
ans=ans*j[2*c]%mod;
}
dfs(1,0,1);
for (i=2;i<=n;i++) ans=ans*get(f[i],g[fa[i]])%mod,g[fa[i]]-=f[i];
printf("%lld\n", (ans+mod)%mod);
}
return 0;
}