上一节中,我们讲述了tensorboard的一个整体架构——以MNIST数据集数字分类问题为例,这一节,我们将探寻一下tensorboard的细节,从标量数据可视化的结果说起。
执行完命令后就可以在浏览器中打开 TensorBoard 界面了 。打开的 Tensor Board 界面会默认进入 SCALARS 选项卡,我们对可视化内容的介绍也先从标量开始。如图 13-6 所示,在 SCALARS 选项卡中显示了 accuracy、 cross_ entropy、 layer_1和 layer__y 4 个折叠起来的标签,这 4 个标签与我们在 程序中使用 summary.scalar()函数汇总标量数据时最外层的 4 个命名空间相 对应,在标签名的最右侧显示了该标签下折叠了多少个独立的图表内容。左边栏的内容可以先不管,以 accuracy标签为例,它只包含了一个图表 内容。单击展开该标签,可以看到一个标题名为 accuracy/accuracy_scalar 的 折线图,这就是我们汇总正确率的结果。标题中的 accuracy 表示我们在命名 空间 accuracy 下计算正确率并运行 summary.scalar()函数,标题中的 accuracy scalar 是汇总时函数的 name 参数值(当时我们赋值为 accuracy_scalar) 。
accuracy/ accuracy_scalar 折线图按照训练的步数展示了正确率的值,将光标停在折线上时会在紧挨着图表的下方显示一个黑色的提示框,里面有 折线图上某一点更精确的数值信息,甚至包括得到数值的时间,如下图。