数组算法之二——双指针法

本文介绍了如何使用双指针法解决数组中找出最大面积矩形的问题。通过对给定数组的分析,提出了一种避免使用两层循环、优化到线性时间复杂度的解决方案。通过从数组两端同时遍历,动态调整宽度和高度,找到能够形成最大面积的矩形。最终,通过示例代码展示了如何实现这一算法,并给出了具体应用实例。
摘要由CSDN通过智能技术生成


用简单通俗易懂的话来记录自己对数组算法的理解

1.原题

1.题目

给定n个非负整数a1,a2,…,an,其中每个数字表示坐标(i, ai)处的一个点。以(i,ai)和(i,0)(i=1,2,3…n)为端点画出n条直线。你可以从中选择两条线与x轴一起构成一个容器,最大的容器能装多少水?
注意:你不能倾斜容器

在这里插入图片描述

输入 [1,8,6,2,5,4,8,3,7]
输出: 49

2.分析

1.分析

要求面积最大,只要做个遍历,把所有组合求出来即可,但是,这样的话,就要使用两个for循环,时间负责度是O(n2),空间复杂度O(1),这个肯定不是最优解,是否有能使用更好的时间从而来实现呢?
一直考虑使用O(n)时间复杂度,这里就介绍双针法。双针法就是从两端进行同时进行遍历,满足一定条件,停止遍历(比如头部i>=尾部j)。而要不断的i++或者j–,则使用f(x)与f(j)的大小比较,这种方式正好满足今天的题目。今天题目是求最大面积,我们知道,随着长的减小,我们期望宽更大,才能达到最大值的比较,因此,刚好满足这里的条件。

3.思路

(1)声明临时变量,标记为最大长方形面积maxArea;
(2)首尾开始遍历,当i<j时,继续,当i>=j时,停止。
当i<j时,比较数组arr[i]与arr[j]
arr[i] > arr[j]时,用arr[j]作为宽,j–,寻找更大的高
arr[i]<= arr[j]时,用arr[i]作为宽,i++,寻找更大的高
(3)每次进行maxArea进行比较赋值。

4.代码

   private int getMaxArea(int[] arr){
        int maxArea = 0;
        int length = arr.length;
        if (length < 2) {
            return 0;
        }
        int i = 0;
        int j = length - 1;
        while (i < j) {
            if(arr[i] < arr[j]){
                maxArea = Math.max(maxArea,(j-i)*arr[i]);
                i++;
            }else{
                maxArea = Math.max(maxArea,(j-i)*arr[j]);
                j--;
            }
        }
        return maxArea;
    }

结果:

arr1.areaSize:2
arr2.areaSize:49
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值