Sample Input
2 1 3 1 5 1 1 11014 1 14409 9
Sample Output
Case 1: 9 Case 2: 736427HintFor the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).
题意:给你 a,b,c,d,e,求 a ≤ x ≤ b,c ≤ y ≤ d时,gcd(x,y) = e的情况
思路:
偶然看到一道题用的是莫比乌斯反演,发现不会就去学习了一下。
本题gcd(x,y) = e 可以看成 gcd(x/e,y/e) = 1,然后利用莫比乌斯反演求出
/*
直接用莫比乌斯反演,由于 (3.5)(5.3)看做相同的,
在最后减去他们即可
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <queue>
#include <vector>
#include <algorithm>
typedef long long ll;
using namespace std;
const int inf = 0x3f3f3f3f;
const int maxn = 1e6+10;
int is_prime[maxn];
int prime[maxn];
int mu[maxn];
int tot;
void Moblus()
{
tot = 0;
memset(is_prime,0,sizeof(is_prime));
mu[1] = 1;
for(int i = 2; i <= maxn; i++)
{
if(!is_prime[i])
{
prime[tot++] = i;
mu[i] = -1;
}
for(int j = 0; j < tot; j++)
{
if(prime[j]*i>maxn)
break;
is_prime[i*prime[j]] = 1;
if(i % prime[j]) //prime[j]不重复
{
mu[i*prime[j]] = -mu[i];
}
else
{
mu[i*prime[j]] = 0;
break;
}
}
}
}
int main()
{
int T;
int a,b,c,d,k;
Moblus();
int cas = 1;
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
printf("Case %d: ",cas++);
if(k == 0)
{
printf("0\n");
continue;
}
b /= k;
d /= k;
if(b > d)
swap(b,d);
ll ans = 0;
for(int i = 1; i <= b; i++)
{
ans += (ll)mu[i]*(b/i)*(d/i);
// printf("%d %d %d\n",mu[i],b/i,d/i);
}
ll ans1 =0;
for(int i = 1; i <= b; i++) //计算重复部分
ans1 += (ll)mu[i]*(b/i)*(b/i);
printf("%I64d\n",ans-ans1/2);
}
return 0;
}