hdu1695 莫比乌斯反演

Sample Input
  
  
2 1 3 1 5 1 1 11014 1 14409 9
 

Sample Output
  
  
Case 1: 9 Case 2: 736427
Hint
For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).


题意:给你 a,b,c,d,e,求   a ≤ x ≤ b,c ≤ y ≤ d时,gcd(x,y) = e的情况

思路:

偶然看到一道题用的是莫比乌斯反演,发现不会就去学习了一下。

本题gcd(x,y) = e 可以看成 gcd(x/e,y/e) = 1,然后利用莫比乌斯反演求出


/*
直接用莫比乌斯反演,由于 (3.5)(5.3)看做相同的,
在最后减去他们即可
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <queue>
#include <vector>
#include <algorithm>
typedef long long ll;
using namespace std;
const int inf = 0x3f3f3f3f;
const int maxn = 1e6+10;

int is_prime[maxn];
int prime[maxn];
int mu[maxn];
int tot;

void Moblus()
{
    tot = 0;
    memset(is_prime,0,sizeof(is_prime));
    mu[1] = 1;
    for(int i = 2; i <= maxn; i++)
    {
        if(!is_prime[i])
        {
            prime[tot++] = i;
            mu[i] = -1;
        }

        for(int j = 0; j < tot; j++)
        {
            if(prime[j]*i>maxn)
                break;
            is_prime[i*prime[j]] = 1;
            if(i % prime[j])             //prime[j]不重复
            {
                mu[i*prime[j]] = -mu[i];
            }
            else
            {
                mu[i*prime[j]] = 0;
                break;
            }
        }
    }
}

int main()
{
    int T;
    int a,b,c,d,k;
    Moblus();
    int cas = 1;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
        printf("Case %d: ",cas++);
        if(k == 0)
        {
            printf("0\n");
            continue;
        }
        b /= k;
        d /= k;

        if(b > d)
            swap(b,d);
        ll ans = 0;
        for(int i = 1; i <= b; i++)
        {
            ans += (ll)mu[i]*(b/i)*(d/i);
//            printf("%d %d %d\n",mu[i],b/i,d/i);
        }
        ll ans1 =0;
        for(int i = 1; i <= b; i++)        //计算重复部分
            ans1 += (ll)mu[i]*(b/i)*(b/i);
        printf("%I64d\n",ans-ans1/2);
    }
    return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值