满二叉树

除最后一层无任何子节点外,每一层上的所有结点都有两个子结点二叉树。
国内教程定义:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是(2^k) -1 ,则它就是满二叉树.
这里写图片描述

如果一棵二叉树的结点要么是叶子结点,要么它有两个孩子结点,这样的树就是满二叉树。

用链表从上往下, 从左往右依次标记为1 ,2 , 3, 4, 5,…
考虑用二叉查询法的方法不行, 因为节点左侧小于节点, 右侧大于节点, 但仔细观察, 节点左侧是节点的2倍, 节点右侧是节点的2倍+ 1

T Insert(T node)
{

    if (node->L != NULL)
        node->L = Insert(node->L);
    if (node->R != NULL)
        node->R = Insert(node->R);

    if (node->L == NULL)
    {
        Creat(node->L);
        node->L->num = node->num * 2;
    }
    if (node->R == NULL)
    {
        Creat(node->R);
        node->R->num = node->num * 2 + 1;
    }

    return node;
}

这样即可

源代码

/*
所有结点从上到下从左到右
编号为1, 2, 3,…, 2D-1。
*/

#include <stdio.h>
#include <stdlib.h>

struct Node;
typedef struct Node *T;
struct Node
{
    int num;
    T L;
    T R;
};

void Creat(T &node)
{
    if (node == NULL)
    {
        node = (T)malloc(sizeof(struct Node));
        if (node == NULL)
            exit(0);
        node->L = node->R = NULL;
    }
}

T Insert(T node)
{

    if (node->L != NULL)
        node->L = Insert(node->L);
    if (node->R != NULL)
        node->R = Insert(node->R);

    if (node->L == NULL)
    {
        Creat(node->L);
        node->L->num = node->num * 2;
    }
    if (node->R == NULL)
    {
        Creat(node->R);
        node->R->num = node->num * 2 + 1;
    }

    return node;
}

void P(T node)
{
    if (node != NULL)
    {
        printf("%d ", node->num);
        P(node->L);
        P(node->R);
    }
}


int main()
{
    T node = NULL;
    Creat(node);
    node->num = 1;
    int m;
    scanf("%d", &m);
    for (int i = 1; i < m; i++)
        node = Insert(node);
    P(node);

    system("pause");
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值