数据仓库之电商数仓-- 1、用户行为数据采集

目录

-----------------------------------------------------分隔符-----------------------------------------------------
数据仓库之电商数仓-- 1、用户行为数据采集==>
数据仓库之电商数仓-- 2、业务数据采集平台==>
数据仓库之电商数仓-- 3.1、电商数据仓库系统(DIM层、ODS层、DWD层)==>
数据仓库之电商数仓-- 3.2、电商数据仓库系统(DWS层)==>
数据仓库之电商数仓-- 3.3、电商数据仓库系统(DWT层)==>
数据仓库之电商数仓-- 3.4、电商数据仓库系统(ADS层)==>
数据仓库之电商数仓-- 4、可视化报表Superset==>
数据仓库之电商数仓-- 5、即席查询Kylin==>

一、数据仓库概念

数据仓库(Data Warehouse),是为企业制定决策,提供数据支持的。可以帮助企业改进业务流程、提高产品质量等。

数据仓库的输入数据通常包括:业务数据、用户行为数据和爬虫数据等。

业务数据:就是各行业在处理事务过程中产生的数据。如用户在电商网站中登录、下载、支付等过程中,需要和网站后台数据库进行增删改查交互,产生的数据就是业务数据。业务数据通常存储在MySQL、Oracle等数据库中。

在这里插入图片描述

二、项目需求及架构设计

2.1 项目需求分析

项目需求

  1. 用户行为数据采集平台搭建;
  2. 业务数据采集平台搭建;
  3. 数据仓库纬度建模;
  4. 分析设备、会员、商品、地区、活动等电商核心主题,统计的报表接近100个;
  5. 采用即席查询工具,随时进行指标分析;
  6. 对集群性能进行监控,发生异常需要报警;
  7. 元数据管理;
  8. 质量监控;
  9. 权限管理;

2.2 项目框架

2.2.1 技术选型

  1. 项目技术如何选型?
  2. 框架版本如何选型(Apache、CDH、HDP)
  3. 服务器使用物理机还是云主机?
  4. 如何确认集群规模?

⭐️:
技术选型主要考虑因素:数据量大小、业务需求、行业内经验、技术成熟度、开发维护成本、总成本预算。

数据采集传输:Flume, Kafka, Sqoop, Logstash, DataX;
数据存储:MySQL, HDFS, HBase, Redis, MongoDB;
数据计算:Hive, Tex, Spark, Flink, Storm;
数据查询:presto, Kylin, Impala, Druid, Clickouse, Doris;
数据可视化:Echarts, Superset, QuickBI, DataV;
任务调度:Azkaban, Oozie, DolphinScheduler, Airflow;
集群监控:Zabbix, Prometheus;
元数据管理:Atalas;
权限管理:Ranger, Sentry.

2.2.2 系统数据流程设计

请添加图片描述

2.2.3 框架版本选型

  1. 如何选择Apache/CDH/HDP版本?

1). Apache:运维麻烦,组件间兼容性需要自己调研,开源;
2). CDH:国内使用最多的版本,不开源;
3). HDP:开源,可进行二次开发,但没有CDH稳定,国内使用甚少。

  1. 云服务选择

1). 阿里云EMR、MaxCompute、DataWorks
2). 亚马逊云EMR
3). 腾讯云EMR
4). 华为云EMR

  1. 具体版本型号

Apache框架版本:
在这里插入图片描述
tips:
框架选型最好选择半年前的稳定版!

2.2.4 服务器选型

  1. 物理机:需专业运维人员;
  2. 云主机:若是选择阿里云,运维工作全由阿里云完成。

2.2.5 集群规模

  1. 如何确认集群规模?(假设:每台服务器8T磁盘,128G内存)

1). 每天日活跃用户100万,每人一天平均100条:100万*100条=1亿条;
2). 每条日志1k左右,每天1亿条:100000000 / 1024 /1024 = 约100G;
3). 半年内不扩容服务器:100G*180天=约18T;
4). 保存3个副本:18T*3=54T;
5). 预留20%~30%Buf = 54T/0.7 = 77T;
6). 约8T*10台服务器。

  1. 若是考虑数仓分层,数据压缩,又要怎么计算?

2.2.6 集群资源规划设计

在企业中通常会搭建一套生产集群和一套测试集群。生产集群运行生产任务,测试集群用于上线前代码编写和测试。

  1. 生产集群

1). 消耗内存的需分开;
2). 数据传输数据比较紧密的放在一起(Kafka、Zookeeper);
3). 客户端尽量放在一到两台服务器上,方便外部访问;
4). 有依赖关系的尽量放在同一台服务器上(如Hive和Azkaban Executor)。

  1. 测试集群

在这里插入图片描述

三、数据生成模块

3.1 目标数据

我们要收集和分析数据主要包括页面数据、时间数据、曝光数据、启动数据和错误数据。

3.1.1 页面日志

页面数据主要记录一个页面的用户访问情况,包括访问时间、停留时间、页面路径等信息。
在这里插入图片描述

在这里插入图片描述

3.1.2 事件日志

时间数据主要记录应用内一个具体操作行为,包括操作类型
操作对象、操作对象描述等信息。
在这里插入图片描述
在这里插入图片描述

3.1.3 曝光日志

曝光数据主要记录页面所曝光的内容,包括曝光对象,曝光类型等信息。
在这里插入图片描述
在这里插入图片描述

3.1.4 启动日志

启动数据记录应用的启动信息。
在这里插入图片描述
在这里插入图片描述

3.1.5 错误日志

错误数据记录应用使用过程中的错误信息,包括错误编号错误信息
在这里插入图片描述

3.2数据埋点

3.2.1 主流埋点方式

目前主流的埋点方式,有代码埋点(前端/后端)、可视化埋点、全埋点三种。

代码埋点是通过调用埋点 SDK 函数,在需要埋点的业务逻辑功能位置调用接口,上报埋点数据。例如,我们对页面中的某个按钮埋点后,当这个按钮被点击时,可以在这个按钮 对应的 OnClick 函数里面调用 SDK 提供的数据发送接口,来发送数据。

可视化埋点只需要研发人员集成采集 SDK,不需要写埋点代码,业务人员就可以通过 访问分析平台的“圈选”功能,来“圈”出需要对用户行为进行捕捉的控件,并对该事件进行命名。圈选完毕后,这些配置会同步到各个用户的终端上,由采集 SDK 按照圈选的配置 自动进行用户行为数据的采集和发送。

全埋点是通过在产品中嵌入 SDK,前端自动采集页面上的全部用户行为事件,上报埋点数据,相当于做了一个统一的埋点。然后再通过界面配置哪些数据需要在系统里面进行分析。

3.2.2 埋点数据上报时机

埋点数据上报时机包括两种方式:

方式一,在离开该页面时,上传在这个页面产生的所有数据(页面、事件、曝光、错误 等)。
优点:批处理,减少了服务器接收数据压力,网络IO少;
缺点:实效性差。

方式二,每个事件、动作、错误等产生后,立即发送。
优点:响应及时;
缺点:对服务器接收数据压力比较大,网络IO增加。

本项目采用方式一埋点。

3.2.3 埋点数据日志结构

我们的日志结构大致可分为两类,一是普通页面埋点日志,二是启动日志

普通页面日志结构如下,每条日志包含了,当前页面的页面信息,所有事件(动作)、 所有曝光信息以及错误信息。除此之外,还包含了一系列公共信息,包括设备信息,地理位 置,应用信息等,即下边的 common 字段。

3.3 服务器和JDK准备

分别安装 hadoop102、hadoop103、hadoop104 三台主机。
服务器和JDK的准备内容看这里==>

3.4 模拟数据

3.4.1 使用说明

  1. 创建 applog 路径
[xiaobai@hadoop102 module]$ mkdir applog

1). 将 application.yml、gmall2020-mock-log-2021-01-22.jar、path.json、logback.xml 上传到 hadoop102 的/opt/module/applog 目录下⬇️

2). 上传文件
在这里插入图片描述

  1. 配置文件⬇️

1). 配置application.yml文件:

# 外部配置打开
logging.config: "./logback.xml"
#业务日期
mock.date: "2020-06-14"

#模拟数据发送模式
#mock.type: "http"
#mock.type: "kafka"
mock.type: "log"

#http模式下,发送的地址
mock.url: "http://localhost:8080/applog"

#kafka模式下,发送的地址
mock:
  kafka-server: "hadoop102:9092,hadoop103:9092,hadoop104:9092"
  kafka-topic: "ODS_BASE_LOG"

#启动次数
mock.startup.count: 200
#设备最大值
mock.max.mid: 500000
#会员最大值
mock.max.uid: 100
#商品最大值
mock.max.sku-id: 35
#页面平均访问时间
mock.page.during-time-ms: 20000
#错误概率 百分比
mock.error.rate: 3
#每条日志发送延迟 ms
mock.log.sleep: 10
#商品详情来源  用户查询,商品推广,智能推荐, 促销活动
mock.detail.source-type-rate: "40:25:15:20"
#领取购物券概率
mock.if_get_coupon_rate: 75
#购物券最大id
mock.max.coupon-id: 3
#搜索关键词  
mock.search.keyword: "图书,小米,iphone11,电视,口红,ps5,苹果手机,小米盒子"

2). 配置path.json文件:

[
  {
   "path":["home","good_list","good_detail","cart","trade","payment"],"rate":20 },
  {
   "path":["home","search","good_list","good_detail","login","good_detail","cart","trade","payment"],"rate":40 },
  {
   "path":["home","mine","orders_unpaid","trade","payment"],"rate":10 },
  {
   "path":["home","mine","orders_unpaid","good_detail","good_spec","comment","trade","payment"],"rate":5 },
  {
   "path":["home","mine","orders_unpaid","good_detail","good_spec","comment","home"],"rate":5 },
  {
   "path":["home","good_detail"],"rate":10 },
  {
   "path":["home"  ],"rate":10 }

3). 配置logback文件:

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
    <property name="LOG_HOME" value="/opt/module/applog/log" />
    <appender name="console" class="ch.qos.logback.core.ConsoleAppender">
        <encoder>
            <pattern>%msg%n</pattern>
        </encoder>
    </appender>

    <appender name="rollingFile" class="ch.qos.logback.core.rolling.RollingFileAppender">
        <rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
            <fileNamePattern>${LOG_HOME}/app.%d{
   yyyy-MM-dd}.log</fileNamePattern>
        </rollingPolicy>
        <encoder>
            <pattern>%msg%n</pattern>
        </encoder>
    </appender>

    <!-- 将某一个包下日志单独打印日志 -->
    <logger name="com.xiaobai.gmall2020.mock.log.util.LogUtil"
            level="INFO" additivity="false">
        <appender-ref ref="rollingFile" />
        <appender-ref ref="console" />
    </logger>

    <root level="error"  >
        <appender-ref ref="console" />
    </root>
</configuration>
~                       
  1. 生成日志

1). 如图,在/opt/module/applog目录下执行以下命令生成对应的日志文件log:

 java -jar gmall2020-mock-log-2021-01-22.jar 

在这里插入图片描述

2). 在/opt/module/applog/log目录下查看生成日志:
在这里插入图片描述

3.4.2 集群日志生成脚本

  1. 在 /home/xiaobai/bin目录下创建脚本lg.sh
[xiaobai@hadoop102 bin]$ vim lg.sh
#!/bin/bash

for i in hadoop102 hadoop103; do
echo "========== $i =========="
ssh $i "cd /opt/module/applog/; java -jar gmall2020-mock-log-2021-01-22.jar >/dev/null 2>&1 &"
done

注:
1). /opt/module/applog/为 jar 包及配置文件所在路径
2). /dev/null 代表 linux 的空设备文件,所有往这个文件里面写入的内容都会丢失,俗
称“黑洞”。
标准输入 0:从键盘获得输入 /proc/self/fd/0;
标准输出 1:输出到屏幕(即控制台) /proc/self/fd/1;
错误输出 2:输出到屏幕(即控制台) /proc/self/fd/2。

  1. 修改脚本执行权限:

                
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值