最长公共子序列,最长上升公共子序列

package test01;
//最长公共子序列问题
public class LCS {
    public static void main(String[] args) {
        char[] ch1={1,2,4,5,6,2};
        char[] ch2={2,5,6,9,2,10,11,43};
        //maxLen[i][j]表示 ch1左边起i个字符形成的字串和ch2左边起j个字符
        //形成的字串的最长公共子序列的长度
        //显然maxLen[0][j]和maxLen[i][0]都是0
        int maxLen[][]=new int[ch1.length+1][ch2.length+1];

        for(int i=0;i<=ch1.length;i++){
            maxLen[i][0]=0;
        }
        for(int j=0;j<=ch2.length;j++){
            maxLen[0][j]=0;
        }
        for(int i=1;i<=ch1.length;i++){
            for(int j=1;j<=ch2.length;j++){
                //注意ch1和ch2的下标只能取到ch1.length-1;ch2.length-2
                if(ch1[i-1]==ch2[j-1]){
                    maxLen[i][j]=maxLen[i-1][j-1]+1;
                }else{
                    maxLen[i][j]=Math.max(maxLen[i][j-1], maxLen[i-1][j]);
                }
            }
        }
        System.out.println("最长公共子序列的长度为:"+maxLen[ch1.length][ch2.length]);
    }
}

以下是最长上升公共子序列的两种方式

package test01;
import java.util.Arrays;
public class Test02 {
    public static void main(String[] args) {
        int[]a={3,4,2,5,7,12,1};
        int maxLen[]=new int[a.length];
        for(int i=0;i<maxLen.length;i++){
            maxLen[i]=1;
        }
        //"我为人人"型
        for(int i=0;i<a.length;i++){
            for(int j=i+1;j<a.length;j++){
                if(a[j]>a[i]){
                    maxLen[j]=Math.max(maxLen[j], maxLen[i]+1);
                }
            }
        }
        for(int i=0;i<maxLen.length;i++){
            System.out.print(maxLen[i]+" ");
        }
        Arrays.sort(maxLen);
        System.out.print("最长上升子序列的长度为: "+maxLen[a.length-1]);       
    }
}
package test01;

import java.util.Arrays;

//最长上升子序列问题
/*
 * 这个动态规划的思想是,分别求出以a[0],a[1],....a[len-1]为终点的最长上升子序列,
 * 把他们存放在maxLen数组中,然后再求出该数组的最大值,即为原问题的解。
 */
public class Test01 {
    public static void main(String[] args) {
        int[] a = { 1, 4, 6, 2, 7, 9, 5 };
        // maxLen[i]表示以a[i]为终点的最长上升子序列长度,也就是说a[i]必须在子序列中
        int maxLen[] = new int[a.length];
        for (int i = 0; i < a.length; i++) {
            maxLen[i] = 1;
        }
        // 以下的思想有点像"人人为我";例如当要求maxLen[i]时,会用到maxLen[0],maxLen[1],...maxLen[i-1];
        for (int i = 1; i < a.length; i++) {// 每次求以a[i]为终点的最长上升子序列的长度,
            for (int j = 0; j < i; j++) {// 以a[j]为终点的最长上升子序列
                if (a[i] > a[j]) {
                    maxLen[i] = Math.max(maxLen[i], maxLen[j] + 1);
                }
            }
        }
        System.out.println("数组maxLen的值为: ");
        for (int i = 0; i < a.length; i++) {
            System.out.print(maxLen[i] + " ");
        }
        Arrays.sort(maxLen);
        System.out.println("最长的子序列为: " + maxLen[a.length - 1]);
    }
}

没有更多推荐了,返回首页