bzoj1778 驱逐猪猡 [高斯消元+概率DP]

Description

奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡。猪猡的文明包含1到N一共N个猪城。这些城市由M条由两个不同端点 Aj Bj (1AjN;1BjN) 表示的双向道路连接。保证城市1至少连接一个其它的城市。一开始臭气弹会被放在城市1。每个小时(包括第一个小时),它有P/Q (1P1,000,000,1Q1,000,000) 的概率污染它所在的城市。如果这个小时内它没有污染它所在的城市,那麽它随机地选择一条道路,在这个小时内沿着这条道路走到一个新的城市。可以离开这个城市的所有道路被选择的概率均等。因为这个臭气弹的随机的性质,奶牛们很困惑哪个城市最有可能被污染。给定一个猪猡文明的地图和臭气弹在每个小时内爆炸的概率。计算每个城市最终被污染的概率。如下例,假设这个猪猡文明有两个连接在一起的城市。臭气炸弹从城市1出发,每到一个城市,它都有1/2的概率爆炸。 1–2 可知下面这些路径是炸弹可能经过的路径(最后一个城市是臭气弹爆炸的城市):
1: 1
2: 1-2
3: 1-2-1
4: 1-2-1-2
5: 1-2-1-2-1 …
要得到炸弹在城市1终止的概率,我们可以把上面的第1,第3,第5……条路径的概率加起来,(也就是上表奇数编号的路径)。上表中第k条路径的概率正好是 (1/2)k ,也就是必须在前k-1个回合离开所在城市(每次的概率为1 - 1/2 = 1/2)并且留在最后一个城市(概率为1/2)。所以在城市1结束的概率可以表示为 1/2+(1/2)3+(1/2)5+ 当我们无限地计算把这些项一个个加起来,我们最后会恰好得到2/3,也就是我们要求的概率,大约是0.666666667。这意味着最终停留在城市2的概率为1/3,大约为0.333333333。

Input

  • 第1行: 四个由空格隔开的整数: N, M, P, 和 Q
  • 第2到第M+1行: 第i+1行用两个由空格隔开的整数 Aj Bj 表示一条道路。

Output

  • 第1到第N行: 在第i行,用一个浮点数输出城市i被摧毁的概率。误差不超过 106 的答桉会 被接受(注意这就是说你需要至少输出6位有效数字使得答桉有效)。

Sample Input

2 1 1 2
1 2

Sample Output

0.666666667
0.333333333

Hint

2N300
1M44,850

Solution

我们构造一个n*n的转移矩阵E[ ][ ],其中E[i][j]表示 ij 转移的概率,易得 E[i][j]=(1P/Q)deg[i]
然后我们构造一个1*n的单位向量T[],表示当前走到每个点的概率,初始时 T[0]=1,0,0,,0 , T[i]=T[i1]E
设答案数组为ans,则有 ans=i0P/QT[i]=P/QT(E0+E1+E2+)
根据无穷递降等比数列求和公式, ans=P/QTI/(IE) [I为单位矩阵]
然后我们可以展开然后列出n个方程,利用高斯消元求解即可!

Code

#include<bits/stdc++.h>
#define maxn 501
#define maxm 50010
#define eps 1e-7
// #define DEBUG
using namespace std;
int n,m,p,q;
double rate;
int edge[maxn][maxn];
double a[maxn][maxn];

inline int dcmp(double x)
{
  if(abs(x)<=eps) return 0;
  else return x>0?1:-1;
}

inline int read()
{
  char ch;
  int read=0,sign=1;
  do
    ch=getchar();
  while((ch<'0'||ch>'9')&&ch!='-');
  if(ch=='-') ch=getchar(),sign=-1;
  while(ch>='0'&&ch<='9')
  {
    read=read*10+ch-'0';
    ch=getchar();
  }
  return sign*read;
}

void change()
{
  for(int i=1;i<=n;++i)
    for(int j=1;j<=n;++j)
    {
      if(edge[i][j]) a[j][i]=(rate-1)/edge[i][0];
      if(i==j) a[i][j]+=1;
    }
  a[1][n+1]=rate;
}

void prework()
{
  n=read(),m=read(),p=read(),q=read();
  rate=double(p)/double(q);
  for(int i=1,u,v;i<=m;++i)
  {
    int u=read();
    int v=read();
    edge[u][v]=1;
    edge[v][u]=1;
    edge[u][0]++;
    edge[v][0]++;
  }
  change();
#ifdef DEBUG
  for(int i=1;i<=n;++i){
    for(int j=1;j<=n+1;++j)
      printf("%.3lf ",a[i][j]);
    printf("\n");}
#endif
}

void gauss()
{
  for(int i=1;i<=n;++i)
  {
    if(!dcmp(a[i][i]))
    {
      int k=i;
      while(!dcmp(a[k][k])) k++;
      swap(a[k],a[i]);
    }
    for(int j=i+1;j<=n;++j)
    {
      for(int k=i+1;k<=n+1;++k)
        a[j][k]-=a[i][k]*(a[j][i]/a[i][i]);
      a[j][i]=0;
    }
  }
  for(int i=n;i>1;--i)
  {
    a[i][n+1]/=a[i][i];
    for(int j=1;j<i;++j)
    {
      a[j][n+1]-=a[i][n+1]*a[j][i];
      a[j][i]=0;
    }
  }
  for(int i=1;i<=n;++i) printf("%.9lf\n",a[i][n+1]);
}

int main()
{
  prework();
  gauss();
  return 0;
}
  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值