《计算之魂》思考题1.3 - Q1

本文介绍了如何使用贪心思想解决线性复杂度的最大子数组和问题。通过C++代码展示了如何在O(n)的时间复杂度内找到数组中连续子数组的最大和,关键在于当连续和小于等于0时,重置计数器。

Q1. 将例题 1.3 的线性复杂度算法写成伪代码。

一、解题思路

其实,从本质上来讲,吴军老师给出的线性复杂度的解题思路是贪心思想。

首先,得要从第一个正整数开始计算,并令其为左端点Li(书中也证明了:Li = p ,i = 1,2…),所以不需要计算反向Maxb 来确定左端点;

其次,当 S(p,q)< 0 时立刻停止计算,重新从 q + 1 开始寻找第一个正整数作为新区间的左端点,因为负数加上下一个元素只会导致“连续和”越来越小,只会降低总和,这就是“贪心”所在。

二、代码(C++)

class Solution{
public:
    int maxSubArray(vector<int>& nums){
        int result = INT32_MIN;
        int count = 0;
        for(int i = 0; i < nums.size(); i++){
            count += nums[i];
            if(count > result){
                result = count;
            }
            if(count <= 0) count = 0;
        }
        return result;
    }  
} 
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值