tf.compat.v1.placeholder

1 placeholder是占位符,相当于定义了一个变量,提前分配了需要的内存。但只有启动一个session,程序才会真正的运行。建立session后,通过feed_dict()函数向变量赋值。

2 定义

tf.compat.v1.placeholder(dtype,shape=None,name=None)

  dtype数据类型、shape数据形状、name名称

3 实例

import tensorflow as tf
import numpy as np
 
input1 = tf.compat.v1.placeholder(tf.float32)
input2 = tf.compat.v1.placeholder(tf.float32)
 
output = tf.multiply(input1, input2)
 
with tf.Session() as sess:
    print(sess.run(output, feed_dict = {input1:[3.], input2: [4.]}))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值