resampling method

本文介绍了交叉验证法中的留一交叉验证(LOOCV)和K折交叉验证(k-fold CV),以及自助法(bootstrap)在模型验证中的应用。通过比较这些方法,探讨了它们在估计测试错误率、计算量和波动性方面的优缺点,并提供了R语言中执行自助法的示例。
摘要由CSDN通过智能技术生成

交叉验证法(CV)和自助法(bootstrap)

验证集方法:为了估计在Auto数据集上拟合多个线性模型所产生的测试错误率

下面通过一个示例来学习其原理:

set.seed(12)
#划分观测集
library(ISLR)
#从1:392中随机抽取196个数,代表得到196个训练观测
train <- sample(392,size=196)

#然后用lm()函数中的subset选项,用训练数据集拟合一个线性回归模型
lm.fit <- lm(mpg~horsepower,data=Auto,subset=train)
#用验证数据集来计算均方误差
lm.pred <- predict(lm.fit,Auto)
mean((Auto$mpg-lm.pred)[-train]^2)#删去训练数据集中的观测值
20.86694

#用poly()函数来估计用二次,三次多项式回归所产生的测试误差
lm.fit2 <- lm(mpg~poly(horsepower,2),data=Auto,subset=train)#随机抽取数据集中的192个数来做拟合
#验证均方误差
mean((Auto$mpg-predict(lm.fit2,Auto))[-train]^2)
[1] 15.64132

lm.fit3 <- lm(mpg~poly(horsepower,3),data=Auto,subset=train)
mean((Auto$mpg-predict(lm.fit3,Auto))[-train]^2)
[1] 15.76978

#如果选择了不同的训练集,那在验证集上就会有不同的测试误差
set.seed(123)
train <- sample(392,196)
lm.fit <- lm(mpg~horsepower,data=Auto,subset=train)
mean((Auto$mpg-predict(lm.fit))[-train]^2)
[1] 93.00332
lm.fit2 <- lm(mpg~poly(horsepower,2),data=Auto,subset=train)
mean((Auto$mpg-predict(lm.fit2))[-train]^2)
[1] 101.0372
lm.fit3 <- lm(mpg~poly(horsepower,3),data=Auto,subset&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值