Jupyter,让数据更加可视化

本文介绍了如何利用Jupyter进行数据可视化,包括查询也门、赞比亚的累计确诊人数并绘制折线图,以及找出2020年5月4日确诊超1万国家的死亡率排名并展示直方图。内容主要涉及pandas和numpy的使用。
摘要由CSDN通过智能技术生成


前言

提示:这里可以添加本文要记录的大概内容:

Jupyter,让数据更加可视化✨


提示:以下是本篇文章正文内容,下面案例可供参考

一、题目要求

读取文件xxx数据,其中’Date’:日期, ‘Country’:国家, ‘Confirmed’、 ‘Recovered’、 ‘Deaths’:当日累计确诊、康复、死亡人数,完成以下任务:
(1)查询也门、赞比亚的累计确诊人数,并画出折线图。
(2)查询2020/5/4日确诊病例在1万以上的国家中死亡率(死亡人数/确诊人数)排名前十的国家,并画出直方图。

二、解决方法

(1)

代码如下(示例):

#读取数据
import pandas as pd
aggregat=pd.read_csv("xxx.csv")
aggregat

在这里插入图片描述

#获取数据
Ye=aggregat.loc[aggregat['Country']=='Yemen']
Ye

在这里插入图片描述

#统计数量
<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值